Home
Class 12
MATHS
Show that H1 + H2 +…....+H(n) = (n+1)H(n...

Show that `H_1 + H_2 +…....+H_(n) = (n+1)H_(n) - n.` where `H_(n) = 1 + (1)/(2) + (1)/(3) +….+ (1)/(n) AA n in N.`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|30 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 1|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Show that (d^n)/(dx^(n) )(x^(n) log x) = n! (log x + 1+(1)/(2) +…+(1)/(n)) AA n in N .

The sequence where a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+......+(1)/(n+n) is

Given f(1)=2 and f(n+1)=(f(n)-1)/(f(n)+1)AA n in N then

Show by mathematical induction that tan^(-1) .(1)/(3) + tan^(-1). (1)/(7) + …+tan^(-1). (1)/(n^2 + n +1)= tan^(-1). (n)/(n+2), AA n inN .

If H_(n)=1+(1)/(2)+(1)/(3)+....+(1)/(n),AA n in N then H_(1)+H_(2)+H_(3)+......+H_(n)=

If H_(n)=1+(1)/(2)+(1)/(3)+...+(1)/(n), then value of 1+(3)/(2)+(5)/(3)+...+(2n-1)/(n) is

lim_ (h rarr oo) ((n + 2)! + (n + 1)!) / ((n + 2)! - (n + 1)!)

A_1, A_2,...., A_n are n A.M’s, and H_1, H_2,....., H_n are n H.M’s inserted between a and b . Prove that (A_1 +A_n)/(H_1+H_n)lt (A^2)/(G^2) , where A is the arithmetic mean and G is the geometric mean of a and b .

If x_(1), x_(2) ....... x_(n) & (1)/(h_(1)), (1)/(h_(2)) .....(1)/(h_(n)) are two such that x_(3)=h_(2)=8 & x_(8)=h_(7)=20 then x_(5)h_(10) is

FIITJEE-COMPLEX NUMBER-SOLVED PROBLEMS (SUBJECTIVE)
  1. Show that if iz^3+z^2-z+i=0, then |z|=1

    Text Solution

    |

  2. Prove that, for integral value of n ge1, all the roots of the equation...

    Text Solution

    |

  3. Find the complex number z satisfying the equations |(z-12)/(z-8i)|=5/...

    Text Solution

    |

  4. If |z|ge3, then determine the least value of |z+(1)/(z)|.

    Text Solution

    |

  5. ABCD is a rhombus. Its diagonals AC and BD intersect at the point M a...

    Text Solution

    |

  6. Prove that following inequalities: (i) |(z)/(|z|) -1| le |arg z| (...

    Text Solution

    |

  7. Find z such that |z-2+2i|le 1 and |z| has (i) least absolute value ...

    Text Solution

    |

  8. If points A1, A2,…,A6 representing the complex numbers z1, z2,….,z6 re...

    Text Solution

    |

  9. z1,z2,z3 are complex number and p,q,r are real numbers such that: p/(|...

    Text Solution

    |

  10. Show that the equation a z^3+b z^2+ b z+ a =0 has a root alpha such...

    Text Solution

    |

  11. If 1/(a+omega)+1/(b+omega)+1/(c+omega)+1/(d+omega)=1/omega where a,b...

    Text Solution

    |

  12. ABCD is a rhombus. Its diagonals AC and BD intersect at the point M a...

    Text Solution

    |

  13. 1 1^(n+2)+1 2^(2n+1) is divisible by 133.

    Text Solution

    |

  14. Using mathematical induction , show that (-(1)/(2^2))(1-(2)/(3^2))(1-(...

    Text Solution

    |

  15. Show that H1 + H2 +…....+H(n) = (n+1)H(n) - n. where H(n) = 1 + (1)/(2...

    Text Solution

    |

  16. cosx*cos2x*cos4x.....cos(2^(n-1)x)=(sin2^n x)/(2^nsinx)AAn in N

    Text Solution

    |

  17. Show that 1+2x + 3x^2 +….+ nx^(n-1) = (1-(n+1)x^(n) + nx^(n+1))/((1-x)...

    Text Solution

    |

  18. Find the sum tan^-1 x/ (1+1.2x^2)+tan^-1, x/(1+2.3x^2)+…+tan^-1, x/(1+...

    Text Solution

    |

  19. Prove by mathematical induction that sum(r=0)^(n)r^(n)C(r)=n.2^(n-1), ...

    Text Solution

    |

  20. Show that (d^n)/(dx^(n) )(x^(n) log x) = n! (log x + 1+(1)/(2) +…+(1)/...

    Text Solution

    |