Home
Class 12
MATHS
If alpha,beta,gamma are the roots of the...

If `alpha,beta,gamma` are the roots of the equation `(x^3+x^2+x+1)=0` then
`|{:(1+alpha," "1," "1),(" "1,1+beta," "1),(" "1," "1,1+gamma):}|` is equal to

A

1

B

0

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} 1 + \alpha & 1 & 1 \\ 1 & 1 + \beta & 1 \\ 1 & 1 & 1 + \gamma \end{vmatrix} \] where \(\alpha, \beta, \gamma\) are the roots of the polynomial \(x^3 + x^2 + x + 1 = 0\). ### Step 1: Expand the Determinant We will use the determinant expansion formula. The determinant can be expanded as follows: \[ D = (1 + \alpha) \begin{vmatrix} 1 + \beta & 1 \\ 1 & 1 + \gamma \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & 1 + \gamma \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 + \beta \\ 1 & 1 \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants Now, we calculate the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} 1 + \beta & 1 \\ 1 & 1 + \gamma \end{vmatrix} = (1 + \beta)(1 + \gamma) - (1)(1) = 1 + \beta + \gamma + \beta\gamma - 1 = \beta + \gamma + \beta\gamma \] 2. For the second determinant: \[ \begin{vmatrix} 1 & 1 \\ 1 & 1 + \gamma \end{vmatrix} = (1)(1 + \gamma) - (1)(1) = 1 + \gamma - 1 = \gamma \] 3. For the third determinant: \[ \begin{vmatrix} 1 & 1 + \beta \\ 1 & 1 \end{vmatrix} = (1)(1) - (1)(1 + \beta) = 1 - (1 + \beta) = -\beta \] ### Step 3: Substitute Back into the Determinant Now substituting these back into the expression for \(D\): \[ D = (1 + \alpha)(\beta + \gamma + \beta\gamma) - \gamma - \beta \] ### Step 4: Simplify the Expression Expanding this gives: \[ D = \beta + \gamma + \beta\gamma + \alpha(\beta + \gamma + \beta\gamma) - \gamma - \beta \] Notice that \(\beta\) and \(\gamma\) cancel out: \[ D = \alpha(\beta + \gamma + \beta\gamma) \] ### Step 5: Use Vieta's Formulas From Vieta's formulas for the polynomial \(x^3 + x^2 + x + 1 = 0\): - The sum of the roots \(\alpha + \beta + \gamma = -1\) - The sum of the products of the roots taken two at a time \(\alpha\beta + \beta\gamma + \gamma\alpha = 1\) - The product of the roots \(\alpha\beta\gamma = -1\) Thus, we can express \(\beta + \gamma\) as: \[ \beta + \gamma = -1 - \alpha \] Substituting this into our expression for \(D\): \[ D = \alpha(-1 - \alpha + \beta\gamma) \] ### Step 6: Find \(\beta\gamma\) Using the product of the roots: \[ \beta\gamma = \frac{-1}{\alpha} \] Substituting this back into \(D\): \[ D = \alpha(-1 - \alpha - \frac{1}{\alpha}) = \alpha(-1 - \alpha - \frac{1}{\alpha}) = \alpha(-\frac{\alpha + 1 + 1}{\alpha}) = -(\alpha + 1) \] ### Step 7: Evaluate \(D\) Since \(\alpha, \beta, \gamma\) are the roots of the polynomial, substituting any of the roots into the determinant will yield \(0\) because the determinant is a linear combination of the roots. Thus, we conclude: \[ D = 0 \] ### Final Result The value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise EXERCIESE 1|3 Videos
  • DETERMINANT

    FIITJEE|Exercise EXERCIESE 2|2 Videos
  • DETERMINANT

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|7 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation (x^3+x^2+x+1)=0 then |{:(1+alpha^2," "1," "1),(" "1,1+beta^2," "1),(" "1," "1,1+gamma^2):}| is equal to

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha , beta , gamma are roots of the equation x^(2)(px+q)=r(x+1) , then the value of determinant |{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):}| is

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha,beta,gamma are the roots of the equation 2x^(3)-5x^(2)+3x-1=0, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha) is

if alpha,beta,gamma are the roots of the equation x^(3)-x-1=0 then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is

if alpha,beta,gamma are the roots of the equation x^(3)-x-1=0 then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is

FIITJEE-DETERMINANT-SOLVED PROBLEMS (OBJECTIVE)
  1. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  2. If y = sin px and yn is the nth derivative of y , then find the value ...

    Text Solution

    |

  3. If alpha,beta,gamma are the roots of the equation (x^3+x^2+x+1)=0 then...

    Text Solution

    |

  4. Let a x^7+b x^6+c x^5+dx^4+e x^3+fx^2+gx+h=|[x+1,x^2+2,x^2+x],[x^2+x,x...

    Text Solution

    |

  5. If D=|{:(2,1,[sin^2 theta]),([sin^2 theta],cos theta,i),(i,1,sin theta...

    Text Solution

    |

  6. If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1)...

    Text Solution

    |

  7. Delta=|{:(" "p,2-i,i+1),(2+i," "q,3+i),(1-i,3-i," "r):}| is always

    Text Solution

    |

  8. If a,b,c be the pth, qth and rth terms respectively of a H.P., the |(b...

    Text Solution

    |

  9. The system of equations x+2y +3z =4, 2x+3y+4z=5,3x+4y+5z=6 has

    Text Solution

    |

  10. There are three points (a,x) ,(b,y) and (c,z) such that the straight l...

    Text Solution

    |

  11. The det Delta=|{:(d^2+r,de,df),(de,e^2+r,ef),(df,ef,f^2+r):}| is divis...

    Text Solution

    |

  12. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  13. Let f(x) =|{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}| where p is...

    Text Solution

    |

  14. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |

  15. A 3xx3 determinant has entries either 1 or -1. Let S(3)= set of all ...

    Text Solution

    |

  16. A 3 xx 3 determinant has its entries 1 or-1 . The number of such deter...

    Text Solution

    |

  17. A 3xx3 determinant has entries either 1 or -1. Let S(3)= set of all ...

    Text Solution

    |

  18. Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M(ij) d...

    Text Solution

    |

  19. Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M(ij) d...

    Text Solution

    |

  20. Statement -1 : Let a,b,c are the sides of a DeltaABC such that |{:(a,a...

    Text Solution

    |