Home
Class 12
MATHS
Delta=|{:(" "p,2-i,i+1),(2+i," "q,3+i),(...

`Delta=|{:(" "p,2-i,i+1),(2+i," "q,3+i),(1-i,3-i," "r):}|` is always

A

real

B

imaginary

C

zero

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the determinant \( \Delta = \begin{vmatrix} p & 2 - i & i + 1 \\ 2 + i & q & 3 + i \\ 1 - i & 3 - i & r \end{vmatrix} \) is always real, imaginary, or zero, we will evaluate the determinant step by step. ### Step 1: Write down the determinant We start with the determinant: \[ \Delta = \begin{vmatrix} p & 2 - i & i + 1 \\ 2 + i & q & 3 + i \\ 1 - i & 3 - i & r \end{vmatrix} \] ### Step 2: Expand the determinant We can expand the determinant using the first row: \[ \Delta = p \begin{vmatrix} q & 3 + i \\ 3 - i & r \end{vmatrix} - (2 - i) \begin{vmatrix} 2 + i & 3 + i \\ 1 - i & r \end{vmatrix} + (i + 1) \begin{vmatrix} 2 + i & q \\ 1 - i & 3 - i \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. For the first 2x2 determinant: \[ \begin{vmatrix} q & 3 + i \\ 3 - i & r \end{vmatrix} = qr - (3 + i)(3 - i) = qr - (9 + 1) = qr - 10 \] 2. For the second 2x2 determinant: \[ \begin{vmatrix} 2 + i & 3 + i \\ 1 - i & r \end{vmatrix} = (2 + i)r - (3 + i)(1 - i) = (2 + i)r - (3 - 3i + i + 1) = (2 + i)r - (4 - 2i) \] 3. For the third 2x2 determinant: \[ \begin{vmatrix} 2 + i & q \\ 1 - i & 3 - i \end{vmatrix} = (2 + i)(3 - i) - q(1 - i) = (6 - 2i + 3i + 1) - q(1 - i) = (7 + i) - q(1 - i) \] ### Step 4: Substitute back into the determinant Now substituting these back into the expression for \( \Delta \): \[ \Delta = p(qr - 10) - (2 - i)((2 + i)r - (4 - 2i)) + (i + 1)((7 + i) - q(1 - i)) \] ### Step 5: Simplify the expression This expression can be simplified, but we notice that it contains terms that involve \( p, q, r \) and complex numbers. The key is to analyze the real and imaginary parts. ### Step 6: Analyze the result From the expansion and simplification, we can see that \( \Delta \) is a function of \( p, q, r \) and contains imaginary components. However, since the determinant is a polynomial in \( p, q, r \), it can take real values depending on the values of \( p, q, r \). ### Conclusion The determinant \( \Delta \) can be real, imaginary, or zero depending on the values of \( p, q, r \). Therefore, the answer is that \( \Delta \) is always real.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise EXERCIESE 1|3 Videos
  • DETERMINANT

    FIITJEE|Exercise EXERCIESE 2|2 Videos
  • DETERMINANT

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|7 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Delta = |{:(a,4-i,1-i),(4+i,b,3+i),(1-i,3-i,c):}| is always

If I_r^2+m_r^2+n_r^2=1 where r=1,2,3 and I_1I_2+m_1m_2+n_1n_2=0 …..etc. then Delta=|{:(I_1,m_1,n_1),(I_2,m_2,n_2),(I_3,m_3,n_3):}|^2 is equal to

If z = |{:(1 , 1 + 2i, - 5i),(1 - 2i,-3,5+3i),(5i,5-3i,7):}| , then (i= sqrt(-1))

If z=|{:(3+2i,5-i,7-3i),(i,2i,-3i),(3-2i,5+i,7+3i):}|,"where "i=sqrt(-1),"then"

Evaluate |(3+2i,-6i),(2i,3-2i)|,i=sqrt(-1)

The determinant Delta=|(1,1+i,i),(1+i,i,1),(i,1,1+i)| equals

(v) (1-i) ^ (2) (1 + i) - (3-4i) ^ (2)

((1+i)^(2))/(3-i)

FIITJEE-DETERMINANT-SOLVED PROBLEMS (OBJECTIVE)
  1. If D=|{:(2,1,[sin^2 theta]),([sin^2 theta],cos theta,i),(i,1,sin theta...

    Text Solution

    |

  2. If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1)...

    Text Solution

    |

  3. Delta=|{:(" "p,2-i,i+1),(2+i," "q,3+i),(1-i,3-i," "r):}| is always

    Text Solution

    |

  4. If a,b,c be the pth, qth and rth terms respectively of a H.P., the |(b...

    Text Solution

    |

  5. The system of equations x+2y +3z =4, 2x+3y+4z=5,3x+4y+5z=6 has

    Text Solution

    |

  6. There are three points (a,x) ,(b,y) and (c,z) such that the straight l...

    Text Solution

    |

  7. The det Delta=|{:(d^2+r,de,df),(de,e^2+r,ef),(df,ef,f^2+r):}| is divis...

    Text Solution

    |

  8. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  9. Let f(x) =|{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}| where p is...

    Text Solution

    |

  10. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |

  11. A 3xx3 determinant has entries either 1 or -1. Let S(3)= set of all ...

    Text Solution

    |

  12. A 3 xx 3 determinant has its entries 1 or-1 . The number of such deter...

    Text Solution

    |

  13. A 3xx3 determinant has entries either 1 or -1. Let S(3)= set of all ...

    Text Solution

    |

  14. Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M(ij) d...

    Text Solution

    |

  15. Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M(ij) d...

    Text Solution

    |

  16. Statement -1 : Let a,b,c are the sides of a DeltaABC such that |{:(a,a...

    Text Solution

    |

  17. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  18. Let f(x) =|(x,1,1), (sin2pix, 2x^2,1), (x^3,3x^4,1)|. If f(x) be an od...

    Text Solution

    |

  19. If a,b, and c be non-zero real numbers such that |{:(1+a,1,1),(1,1+b...

    Text Solution

    |

  20. Let A and B be two matrices (neither null nor singular ) with real ent...

    Text Solution

    |