Home
Class 12
MATHS
The system of equations x+2y +3z =4, 2x+...

The system of equations x+2y +3z =4, 2x+3y+4z=5,3x+4y+5z=6 has

A

Infinitely many solution

B

No solution

C

Unique solutions

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of solution for the given system of equations: 1. **Write down the equations:** \[ \begin{align*} 1. & \quad x + 2y + 3z = 4 \\ 2. & \quad 2x + 3y + 4z = 5 \\ 3. & \quad 3x + 4y + 5z = 6 \end{align*} \] 2. **Identify the coefficients and constants:** The coefficients of \(x\), \(y\), and \(z\) can be arranged in a matrix form: \[ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \] The constants on the right side are \(4\), \(5\), and \(6\). 3. **Calculate the determinant \(D\):** The determinant \(D\) of the coefficient matrix can be calculated using the formula for a \(3 \times 3\) determinant: \[ D = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} \] Expanding this determinant: \[ D = 1 \cdot (3 \cdot 5 - 4 \cdot 4) - 2 \cdot (2 \cdot 5 - 4 \cdot 3) + 3 \cdot (2 \cdot 4 - 3 \cdot 3) \] \[ = 1 \cdot (15 - 16) - 2 \cdot (10 - 12) + 3 \cdot (8 - 9) \] \[ = 1 \cdot (-1) - 2 \cdot (-2) + 3 \cdot (-1) \] \[ = -1 + 4 - 3 = 0 \] 4. **Determine the values of \(D_x\), \(D_y\), and \(D_z\):** - **Calculate \(D_x\):** Replace the first column with the constants: \[ D_x = \begin{vmatrix} 4 & 2 & 3 \\ 5 & 3 & 4 \\ 6 & 4 & 5 \end{vmatrix} \] Expanding this determinant: \[ D_x = 4 \cdot (3 \cdot 5 - 4 \cdot 4) - 2 \cdot (5 \cdot 5 - 4 \cdot 6) + 3 \cdot (5 \cdot 4 - 3 \cdot 6) \] \[ = 4 \cdot (15 - 16) - 2 \cdot (25 - 24) + 3 \cdot (20 - 18) \] \[ = 4 \cdot (-1) - 2 \cdot 1 + 3 \cdot 2 \] \[ = -4 - 2 + 6 = 0 \] - **Calculate \(D_y\):** Replace the second column with the constants: \[ D_y = \begin{vmatrix} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 3 & 6 & 5 \end{vmatrix} \] Expanding this determinant: \[ D_y = 1 \cdot (5 \cdot 5 - 4 \cdot 6) - 4 \cdot (2 \cdot 5 - 4 \cdot 3) + 3 \cdot (2 \cdot 6 - 5 \cdot 3) \] \[ = 1 \cdot (25 - 24) - 4 \cdot (10 - 12) + 3 \cdot (12 - 15) \] \[ = 1 \cdot 1 - 4 \cdot (-2) + 3 \cdot (-3) \] \[ = 1 + 8 - 9 = 0 \] - **Calculate \(D_z\):** Replace the third column with the constants: \[ D_z = \begin{vmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 3 & 4 & 6 \end{vmatrix} \] Expanding this determinant: \[ D_z = 1 \cdot (3 \cdot 6 - 5 \cdot 4) - 2 \cdot (2 \cdot 6 - 5 \cdot 3) + 4 \cdot (2 \cdot 4 - 3 \cdot 3) \] \[ = 1 \cdot (18 - 20) - 2 \cdot (12 - 15) + 4 \cdot (8 - 9) \] \[ = 1 \cdot (-2) - 2 \cdot (-3) + 4 \cdot (-1) \] \[ = -2 + 6 - 4 = 0 \] 5. **Conclusion:** Since \(D = 0\), \(D_x = 0\), \(D_y = 0\), and \(D_z = 0\), we conclude that the system of equations has infinitely many solutions. ### Final Answer: The system of equations has infinitely many solutions.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise EXERCIESE 1|3 Videos
  • DETERMINANT

    FIITJEE|Exercise EXERCIESE 2|2 Videos
  • DETERMINANT

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|7 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

The system of linear equations x - 2y + z = 4 2x + 3y - 4z = 1 x - 9y + (2a + 3)z = 5a + 1 has infinitely many solution for:

Examine the consistency of the system of equations 5x -y + 4z = 5," " 2x + 3y + 5z = 2," " 5x -2y + 6z = 1

If the system of equations x+y+2z=0,2x-3y+z=0,x-5y+4z=lambda has a non trival solution then

Find the nature of solution for the given system of equation: x+2y+3z=1;2x+3y+4z=3;3x+4y+5z=0

The system of equations x+2y-4z=3,2x-3y+2z=5 and x -12y +16z =1 has

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

FIITJEE-DETERMINANT-SOLVED PROBLEMS (OBJECTIVE)
  1. Delta=|{:(" "p,2-i,i+1),(2+i," "q,3+i),(1-i,3-i," "r):}| is always

    Text Solution

    |

  2. If a,b,c be the pth, qth and rth terms respectively of a H.P., the |(b...

    Text Solution

    |

  3. The system of equations x+2y +3z =4, 2x+3y+4z=5,3x+4y+5z=6 has

    Text Solution

    |

  4. There are three points (a,x) ,(b,y) and (c,z) such that the straight l...

    Text Solution

    |

  5. The det Delta=|{:(d^2+r,de,df),(de,e^2+r,ef),(df,ef,f^2+r):}| is divis...

    Text Solution

    |

  6. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  7. Let f(x) =|{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}| where p is...

    Text Solution

    |

  8. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |

  9. A 3xx3 determinant has entries either 1 or -1. Let S(3)= set of all ...

    Text Solution

    |

  10. A 3 xx 3 determinant has its entries 1 or-1 . The number of such deter...

    Text Solution

    |

  11. A 3xx3 determinant has entries either 1 or -1. Let S(3)= set of all ...

    Text Solution

    |

  12. Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M(ij) d...

    Text Solution

    |

  13. Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M(ij) d...

    Text Solution

    |

  14. Statement -1 : Let a,b,c are the sides of a DeltaABC such that |{:(a,a...

    Text Solution

    |

  15. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  16. Let f(x) =|(x,1,1), (sin2pix, 2x^2,1), (x^3,3x^4,1)|. If f(x) be an od...

    Text Solution

    |

  17. If a,b, and c be non-zero real numbers such that |{:(1+a,1,1),(1,1+b...

    Text Solution

    |

  18. Let A and B be two matrices (neither null nor singular ) with real ent...

    Text Solution

    |

  19. Which of the following options is the only correct combination ?

    Text Solution

    |

  20. Which of the following options is the only correct combination ?

    Text Solution

    |