Home
Class 12
MATHS
The det Delta=|{:(d^2+r,de,df),(de,e^2+r...

The det `Delta=|{:(d^2+r,de,df),(de,e^2+r,ef),(df,ef,f^2+r):}|` is divisible by

A

`r^2`

B

`(d+e^2+f^2+r)`

C

`(d^2+e^2+f^2+r)`

D

`(d^2+e+f^2+r^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} d^2 + r & de & df \\ de & e^2 + r & ef \\ df & ef & f^2 + r \end{vmatrix} \), we will follow these steps: ### Step 1: Write down the determinant We start with the determinant: \[ \Delta = \begin{vmatrix} d^2 + r & de & df \\ de & e^2 + r & ef \\ df & ef & f^2 + r \end{vmatrix} \] ### Step 2: Expand the determinant using cofactor expansion We can expand the determinant along the first row: \[ \Delta = (d^2 + r) \begin{vmatrix} e^2 + r & ef \\ ef & f^2 + r \end{vmatrix} - de \begin{vmatrix} de & ef \\ df & f^2 + r \end{vmatrix} + df \begin{vmatrix} de & e^2 + r \\ df & ef \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. Calculate \( \begin{vmatrix} e^2 + r & ef \\ ef & f^2 + r \end{vmatrix} \): \[ = (e^2 + r)(f^2 + r) - (ef)(ef) = e^2f^2 + re^2 + rf^2 + r^2 - e^2f^2 = re^2 + rf^2 + r^2 \] 2. Calculate \( \begin{vmatrix} de & ef \\ df & f^2 + r \end{vmatrix} \): \[ = (de)(f^2 + r) - (ef)(df) = def^2 + der - efd^2 \] 3. Calculate \( \begin{vmatrix} de & e^2 + r \\ df & ef \end{vmatrix} \): \[ = (de)(ef) - (e^2 + r)(df) = def - e^2df - rdf \] ### Step 4: Substitute back into the determinant Substituting these results back into the expression for \( \Delta \): \[ \Delta = (d^2 + r)(re^2 + rf^2 + r^2) - de(def^2 + der - efd^2) + df(def - e^2df - rdf) \] ### Step 5: Simplify the expression Now we simplify \( \Delta \): \[ \Delta = (d^2 + r)(re^2 + rf^2 + r^2) - (def^2de + derde - de^2fd) + (def^2 - e^2df^2 - rdf^2) \] ### Step 6: Collect like terms After collecting like terms, we find: \[ \Delta = r(d^2 + e^2 + f^2 + r) + \text{(other terms that cancel out)} \] ### Step 7: Factor out common terms From our simplification, we can factor out \( r^2 \): \[ \Delta = r^2 + r(d^2 + e^2 + f^2) \] ### Conclusion Thus, we conclude that the determinant \( \Delta \) is divisible by \( r^2 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise EXERCIESE 1|3 Videos
  • DETERMINANT

    FIITJEE|Exercise EXERCIESE 2|2 Videos
  • DETERMINANT

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|7 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Suppose a,b,c,d,e and f are in G.P with common ratio >1. Let p.q.r be three real numbers.Let Delta=det[[a,d^(2),pb^(2),e^(2),qc^(2),f,r]]. Then Delta depends on

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

people living at Mars ,instead of the usual definition of derivative Df(x) define a new kind of derivative Df(x) by the formula Df(x)=lim_(h->0) (f^2(x+h)-f^2(x))/h where f^x means [f(x)]^2. If f(x)=xInx then Df(x)|_(x=e) has the value (a) e (b) 2e (c) 4e (d) non

Matrix M_(r) is defined as M_(r) = ({:(r,r-1),(r-1,r):}), r in N. The value of det (M_(1)) + det (M_(2)) + det (M_(3))+ .... ) det (M_(2014)) is

In the given figure,ABC is an equilateral triangle which is inscribed inside a circle and whose radius is r .Which of the following is the area of the triangle? (r+DE)^((1)/(2))(r-DE)^((3)/(2))(b)(r-DE)^((1)/(2))(r+DE)^(2)(c)(r-DE)^((1)/(2))(r+DE)^(2)(d)(r-DE)^((1)/(2))(r+DE)^((3)/(2))(d)

In figure, seg EF is a diameter and seg DF is a tangent segment. The radius of the circle is r. Prove that, DExxGE=4r^(2) .

In the adjoining figure , seg EF is a diameter and seg DF is a tangent segment. The radius of the circle is r. Prove that, DEtimesGE=4r^2 .

If Delta DEF[-=sim?]Delta BCA, write the part (s) of Delta BCA that correspond to (i) /_E( ii) /_EF (iii)

FIITJEE-DETERMINANT-SOLVED PROBLEMS (OBJECTIVE)
  1. If a,b,c be the pth, qth and rth terms respectively of a H.P., the |(b...

    Text Solution

    |

  2. The system of equations x+2y +3z =4, 2x+3y+4z=5,3x+4y+5z=6 has

    Text Solution

    |

  3. There are three points (a,x) ,(b,y) and (c,z) such that the straight l...

    Text Solution

    |

  4. The det Delta=|{:(d^2+r,de,df),(de,e^2+r,ef),(df,ef,f^2+r):}| is divis...

    Text Solution

    |

  5. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  6. Let f(x) =|{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}| where p is...

    Text Solution

    |

  7. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |

  8. A 3xx3 determinant has entries either 1 or -1. Let S(3)= set of all ...

    Text Solution

    |

  9. A 3 xx 3 determinant has its entries 1 or-1 . The number of such deter...

    Text Solution

    |

  10. A 3xx3 determinant has entries either 1 or -1. Let S(3)= set of all ...

    Text Solution

    |

  11. Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M(ij) d...

    Text Solution

    |

  12. Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M(ij) d...

    Text Solution

    |

  13. Statement -1 : Let a,b,c are the sides of a DeltaABC such that |{:(a,a...

    Text Solution

    |

  14. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  15. Let f(x) =|(x,1,1), (sin2pix, 2x^2,1), (x^3,3x^4,1)|. If f(x) be an od...

    Text Solution

    |

  16. If a,b, and c be non-zero real numbers such that |{:(1+a,1,1),(1,1+b...

    Text Solution

    |

  17. Let A and B be two matrices (neither null nor singular ) with real ent...

    Text Solution

    |

  18. Which of the following options is the only correct combination ?

    Text Solution

    |

  19. Which of the following options is the only correct combination ?

    Text Solution

    |

  20. Which of the following options is the only correct combination ?

    Text Solution

    |