Home
Class 12
MATHS
Let f(x)=|{:(cosx,x,1),(2 sinx,x^2,2x),(...

Let `f(x)=|{:(cosx,x,1),(2 sinx,x^2,2x),(tanx,x,1):}|` Find `underset(xto0)"Lt"underset(x)(f'(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the derivative of the determinant function \( f(x) \) as \( x \) approaches 0. The function is defined as: \[ f(x) = \left| \begin{array}{ccc} \cos x & x & 1 \\ 2 \sin x & x^2 & 2x \\ \tan x & x & 1 \end{array} \right| \] ### Step 1: Calculate the Determinant \( f(x) \) We will calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \begin{array}{ccc} a = \cos x & b = x & c = 1 \\ d = 2 \sin x & e = x^2 & f = 2x \\ g = \tan x & h = x & i = 1 \end{array} \] The determinant can be computed as follows: \[ f(x) = \cos x \left( x^2 \cdot 1 - 2x \cdot x \right) - x \left( 2 \sin x \cdot 1 - 2x \cdot \tan x \right) + 1 \left( 2 \sin x \cdot x - x^2 \cdot \tan x \right) \] This simplifies to: \[ f(x) = \cos x (x^2 - 2x^2) - x (2 \sin x - 2x \tan x) + (2x \sin x - x^2 \tan x) \] \[ = -\cos x x^2 - x (2 \sin x - 2x \tan x) + (2x \sin x - x^2 \tan x) \] ### Step 2: Simplify \( f(x) \) Now we can simplify \( f(x) \): \[ f(x) = -\cos x x^2 - 2x \sin x + 2x^2 \tan x + 2x \sin x - x^2 \tan x \] Combining like terms gives: \[ f(x) = -\cos x x^2 + x^2 \tan x \] ### Step 3: Differentiate \( f(x) \) Next, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(-\cos x x^2 + x^2 \tan x) \] Using the product rule for differentiation: \[ f'(x) = -\left( (-\sin x) x^2 + \cos x \cdot 2x \right) + \left( \tan x \cdot 2x + x^2 \sec^2 x \right) \] This simplifies to: \[ f'(x) = \sin x x^2 - 2x \cos x + 2x \tan x + x^2 \sec^2 x \] ### Step 4: Find the Limit Now we need to find: \[ \lim_{x \to 0} \frac{f'(x)}{x} \] Substituting \( f'(x) \): \[ \lim_{x \to 0} \frac{\sin x x^2 - 2x \cos x + 2x \tan x + x^2 \sec^2 x}{x} \] This simplifies to: \[ \lim_{x \to 0} \left( \sin x x - 2 \cos x + 2 \tan x + x \sec^2 x \right) \] ### Step 5: Evaluate the Limit Now we evaluate the limit as \( x \to 0 \): - \( \sin(0) = 0 \) - \( \cos(0) = 1 \) - \( \tan(0) = 0 \) - \( \sec^2(0) = 1 \) Thus, we have: \[ \lim_{x \to 0} \left( 0 - 2 + 0 + 0 \right) = -2 \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{f'(x)}{x} = -2 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by

f'(x) = |{:(cos x , x , 1),(2sin x,x^(2),2x),(tan x, x,1):}| . The value of underset(x rarr 0)(lim) (f(x))/(x) is equal to

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of lim_(xto 0) (f(x))/(x)

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

If f (x)= |{:(x cos x, 2x sin x, x tan x),(1,x,1),(1,2x,1):}|, find lim _(xto0) (f(x))/(x ^(2)).

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If f(x) = |{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2(f'(o))+{f'(1)}^(2)