Let `f(x)=|{:(cosx,x,1),(2 sinx,x^2,2x),(tanx,x,1):}|` Find `underset(xto0)"Lt"underset(x)(f'(x))`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the limit of the derivative of the determinant function \( f(x) \) as \( x \) approaches 0. The function is defined as:
\[
f(x) = \left| \begin{array}{ccc}
\cos x & x & 1 \\
2 \sin x & x^2 & 2x \\
\tan x & x & 1
\end{array} \right|
\]
### Step 1: Calculate the Determinant \( f(x) \)
We will calculate the determinant using the formula for a \( 3 \times 3 \) matrix:
\[
\text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg)
\]
For our matrix:
\[
\begin{array}{ccc}
a = \cos x & b = x & c = 1 \\
d = 2 \sin x & e = x^2 & f = 2x \\
g = \tan x & h = x & i = 1
\end{array}
\]
The determinant can be computed as follows:
\[
f(x) = \cos x \left( x^2 \cdot 1 - 2x \cdot x \right) - x \left( 2 \sin x \cdot 1 - 2x \cdot \tan x \right) + 1 \left( 2 \sin x \cdot x - x^2 \cdot \tan x \right)
\]
This simplifies to:
\[
f(x) = \cos x (x^2 - 2x^2) - x (2 \sin x - 2x \tan x) + (2x \sin x - x^2 \tan x)
\]
\[
= -\cos x x^2 - x (2 \sin x - 2x \tan x) + (2x \sin x - x^2 \tan x)
\]
### Step 2: Simplify \( f(x) \)
Now we can simplify \( f(x) \):
\[
f(x) = -\cos x x^2 - 2x \sin x + 2x^2 \tan x + 2x \sin x - x^2 \tan x
\]
Combining like terms gives:
\[
f(x) = -\cos x x^2 + x^2 \tan x
\]
### Step 3: Differentiate \( f(x) \)
Next, we differentiate \( f(x) \):
\[
f'(x) = \frac{d}{dx}(-\cos x x^2 + x^2 \tan x)
\]
Using the product rule for differentiation:
\[
f'(x) = -\left( (-\sin x) x^2 + \cos x \cdot 2x \right) + \left( \tan x \cdot 2x + x^2 \sec^2 x \right)
\]
This simplifies to:
\[
f'(x) = \sin x x^2 - 2x \cos x + 2x \tan x + x^2 \sec^2 x
\]
### Step 4: Find the Limit
Now we need to find:
\[
\lim_{x \to 0} \frac{f'(x)}{x}
\]
Substituting \( f'(x) \):
\[
\lim_{x \to 0} \frac{\sin x x^2 - 2x \cos x + 2x \tan x + x^2 \sec^2 x}{x}
\]
This simplifies to:
\[
\lim_{x \to 0} \left( \sin x x - 2 \cos x + 2 \tan x + x \sec^2 x \right)
\]
### Step 5: Evaluate the Limit
Now we evaluate the limit as \( x \to 0 \):
- \( \sin(0) = 0 \)
- \( \cos(0) = 1 \)
- \( \tan(0) = 0 \)
- \( \sec^2(0) = 1 \)
Thus, we have:
\[
\lim_{x \to 0} \left( 0 - 2 + 0 + 0 \right) = -2
\]
### Final Answer
Therefore, the limit is:
\[
\lim_{x \to 0} \frac{f'(x)}{x} = -2
\]
Topper's Solved these Questions
DETERMINANT
FIITJEE|Exercise EXERCIESE 4|2 Videos
DETERMINANT
FIITJEE|Exercise EXERCIESE 5|1 Videos
DETERMINANT
FIITJEE|Exercise EXERCIESE 2|2 Videos
DEFINITE INTEGRAL
FIITJEE|Exercise NUMERICAL BASED|3 Videos
ELLIPSE
FIITJEE|Exercise NUMERICAL BASED|4 Videos
Similar Questions
Explore conceptually related problems
Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by
f'(x) = |{:(cos x , x , 1),(2sin x,x^(2),2x),(tan x, x,1):}| . The value of underset(x rarr 0)(lim) (f(x))/(x) is equal to
f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of lim_(xto 0) (f(x))/(x)
Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then
If f (x)= |{:(x cos x, 2x sin x, x tan x),(1,x,1),(1,2x,1):}|, find lim _(xto0) (f(x))/(x ^(2)).
If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=
Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}
If f(x) = |{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2(f'(o))+{f'(1)}^(2)