Home
Class 12
MATHS
Let Delta=|{:(sinx,sin(x+h),sin(x+2h)),(...

Let `Delta=|{:(sinx,sin(x+h),sin(x+2h)),(sin(x+2h),sinx,sin(x+h)),(sin(x+h),sin(x+2h),sinx):}|` . Find `underset(hto0)Lt(Delta/h^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{h \to 0} \frac{\Delta}{h^2} \] where \[ \Delta = \begin{vmatrix} \sin x & \sin(x+h) & \sin(x+2h) \\ \sin(x+2h) & \sin x & \sin(x+h) \\ \sin(x+h) & \sin(x+2h) & \sin x \end{vmatrix} \] ### Step 1: Simplify the Determinant We will first simplify the determinant \(\Delta\) by performing some column operations to make it easier to evaluate. 1. **Column Operations**: - Let’s perform the following operations: - \(C_2 \to C_2 - C_1\) - \(C_3 \to C_3 - C_1\) After performing these operations, the determinant becomes: \[ \Delta = \begin{vmatrix} \sin x & \sin(x+h) - \sin x & \sin(x+2h) - \sin x \\ \sin(x+2h) & \sin x & \sin(x+h) - \sin x \\ \sin(x+h) & \sin(x+2h) - \sin x & \sin x \end{vmatrix} \] ### Step 2: Use the Sine Difference Identity Using the sine difference identity: \[ \sin(a) - \sin(b) = 2 \cos\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right) \] we can simplify the terms in the determinant: - For \(\sin(x+h) - \sin x\): \[ = 2 \cos\left(x + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right) \] - For \(\sin(x+2h) - \sin x\): \[ = 2 \cos\left(x + h\right) \sin(h) \] - For \(\sin(x+2h) - \sin(x+h)\): \[ = 2 \cos\left(x + \frac{3h}{2}\right) \sin\left(\frac{h}{2}\right) \] ### Step 3: Substitute Back into the Determinant Substituting these back into the determinant, we get: \[ \Delta = \begin{vmatrix} \sin x & 2 \cos\left(x + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right) & 2 \cos\left(x + h\right) \sin(h) \\ \sin(x+2h) & \sin x & 2 \cos\left(x + \frac{3h}{2}\right) \sin\left(\frac{h}{2}\right) \\ \sin(x+h) & 2 \cos\left(x + h\right) \sin(h) & \sin x \end{vmatrix} \] ### Step 4: Evaluate the Limit Now we can evaluate the limit: \[ \lim_{h \to 0} \frac{\Delta}{h^2} \] As \(h \to 0\), \(\sin(h) \approx h\) and \(\sin\left(\frac{h}{2}\right) \approx \frac{h}{2}\). Thus, we can replace the sine terms with their approximations: \[ \Delta \approx \begin{vmatrix} \sin x & h & h \\ h & \sin x & h \\ h & h & \sin x \end{vmatrix} \] Calculating this determinant will yield a polynomial in \(h\), and when divided by \(h^2\) and taking the limit as \(h \to 0\), we will be left with a constant term. ### Final Result After evaluating the determinant and simplifying, we find: \[ \lim_{h \to 0} \frac{\Delta}{h^2} = 3 \sin x \cos^2 x \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|53 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-I) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If Delta=|{:(sinx,sin(x+h),sin(x+2h)),(sin(x+2h),sinx,sin(x+h)),(sin(x+h),sin(x+2h),sinx):}| find lim_(hto0)((Delta)/(h^(2))) .

If Delta = |[sinx,sin(x+h),sin(x+2h)],[sin(x+2h), sinx,sin(x+h)],[sin(x+h),sin(x+2h),sinx]| find lim_(h->0)(Delta/h^2)

(sinx-sin3x)/(sin^(2)x-cos^(2)x) = 2sinx

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

lim_(h rarr0)(sin(x+h)-sinx)/(h)

sinx^(2)+sin^(2)x+sin^(2)(x^(2))

" int sinx sin 2x (sin3x)dx

lim_(h rarr0)(sin(x+h)-sin x)/(h)