Home
Class 12
MATHS
if a,b,c are real then find the intervia...

if a,b,c are real then find the intervial in which `f(x)=|{:(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+c^2):}|` is decreasing.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the interval in which the function \( f(x) = \left| \begin{array}{ccc} x + a^2 & ab & ac \\ ab & x + b^2 & bc \\ ac & bc & x + c^2 \end{array} \right| \) is decreasing, we will follow these steps: ### Step 1: Differentiate the Determinant To determine where \( f(x) \) is decreasing, we need to find the derivative \( f'(x) \) and set it less than 0. The determinant can be differentiated with respect to \( x \) using the properties of determinants. ### Step 2: Calculate \( f'(x) \) Using the rule for differentiating determinants, we differentiate each row one by one: 1. **Differentiate the first row**: \[ \frac{\partial}{\partial x} \left| \begin{array}{ccc} x + a^2 & ab & ac \\ ab & x + b^2 & bc \\ ac & bc & x + c^2 \end{array} \right| = \left| \begin{array}{ccc} 1 & 0 & 0 \\ ab & x + b^2 & bc \\ ac & bc & x + c^2 \end{array} \right| \] 2. **Differentiate the second row**: \[ \left| \begin{array}{ccc} x + a^2 & ab & ac \\ 0 & 1 & 0 \\ ac & bc & x + c^2 \end{array} \right| \] 3. **Differentiate the third row**: \[ \left| \begin{array}{ccc} x + a^2 & ab & ac \\ ab & x + b^2 & bc \\ 0 & 0 & 1 \end{array} \right| \] ### Step 3: Expand the Determinants Now, we will expand these determinants. After performing the necessary calculations, we will arrive at: \[ f'(x) = 3x^2 + 2x(a^2 + b^2 + c^2) \] ### Step 4: Set the Derivative Less Than Zero To find the intervals where \( f(x) \) is decreasing, we need to solve: \[ 3x^2 + 2x(a^2 + b^2 + c^2) < 0 \] ### Step 5: Factor the Expression Factoring out \( x \): \[ x(3x + 2(a^2 + b^2 + c^2)) < 0 \] ### Step 6: Find Critical Points Setting the factors equal to zero gives us the critical points: 1. \( x = 0 \) 2. \( 3x + 2(a^2 + b^2 + c^2) = 0 \) leads to \( x = -\frac{2}{3}(a^2 + b^2 + c^2) \) ### Step 7: Determine the Intervals The critical points divide the number line into intervals. We will test the sign of \( f'(x) \) in each interval: 1. \( (-\infty, -\frac{2}{3}(a^2 + b^2 + c^2)) \) 2. \( (-\frac{2}{3}(a^2 + b^2 + c^2), 0) \) 3. \( (0, \infty) \) ### Step 8: Analyze the Signs - For \( x < -\frac{2}{3}(a^2 + b^2 + c^2) \), \( f'(x) > 0 \) (increasing). - For \( -\frac{2}{3}(a^2 + b^2 + c^2) < x < 0 \), \( f'(x) < 0 \) (decreasing). - For \( x > 0 \), \( f'(x) > 0 \) (increasing). ### Conclusion Thus, the function \( f(x) \) is decreasing in the interval: \[ \left(-\frac{2}{3}(a^2 + b^2 + c^2), 0\right) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|53 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-I) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are real numbers, then find the intervals in which : f(x)=|(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))| is strictly increasing or decreasing.

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

If a,b,c be real,then f(x)=det[[x+a^(2),ab,abab,x+b^(2),bcac,bc,x+c^(2)]] is decreasing on

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by