Home
Class 12
MATHS
If equations a^2x+b^2y+c^2=0,a^4x+b^4y+c...

If equations `a^2x+b^2y+c^2=0,a^4x+b^4y+c^4=0 and x+y+1=0` are consistent then

A

a=-b

B

`|b|=|c|`

C

c=a

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the relationship between \( a \), \( b \), and \( c \) for the given equations to be consistent, we will analyze the conditions under which the three equations intersect or overlap. ### Step-by-Step Solution: 1. **Identify the Given Equations:** The equations given are: \[ a^2x + b^2y + c^2 = 0 \quad \text{(1)} \] \[ a^4x + b^4y + c^4 = 0 \quad \text{(2)} \] \[ x + y + 1 = 0 \quad \text{(3)} \] 2. **Rewrite the Equations in Standard Form:** We can rewrite the equations in the standard linear form \( Ax + By + C = 0 \): - For equation (1): \( a^2x + b^2y + c^2 = 0 \) implies \( A_1 = a^2, B_1 = b^2, C_1 = c^2 \) - For equation (2): \( a^4x + b^4y + c^4 = 0 \) implies \( A_2 = a^4, B_2 = b^4, C_2 = c^4 \) - For equation (3): \( x + y + 1 = 0 \) implies \( A_3 = 1, B_3 = 1, C_3 = 1 \) 3. **Set Up the Determinant for Consistency:** The equations are consistent if the determinant of the coefficients is zero: \[ \Delta = \begin{vmatrix} a^2 & b^2 & c^2 \\ a^4 & b^4 & c^4 \\ 1 & 1 & 1 \end{vmatrix} \] 4. **Calculate the Determinant:** We can compute the determinant \( \Delta \): \[ \Delta = a^2 \begin{vmatrix} b^4 & c^4 \\ 1 & 1 \end{vmatrix} - b^2 \begin{vmatrix} a^4 & c^4 \\ 1 & 1 \end{vmatrix} + c^2 \begin{vmatrix} a^4 & b^4 \\ 1 & 1 \end{vmatrix} \] This simplifies to: \[ \Delta = a^2(b^4 - c^4) - b^2(a^4 - c^4) + c^2(a^4 - b^4) \] 5. **Set the Determinant to Zero:** For the equations to be consistent: \[ a^2(b^4 - c^4) - b^2(a^4 - c^4) + c^2(a^4 - b^4) = 0 \] 6. **Analyze the Result:** The above equation implies that: \[ (b^2 - a^2)(b^2 - c^2)(c^2 - a^2) = 0 \] This means that: \[ a^2 = b^2, \quad b^2 = c^2, \quad \text{or} \quad c^2 = a^2 \] Hence, we conclude: \[ |a| = |b| = |c| \] ### Final Result: The relationship between \( a \), \( b \), and \( c \) is: \[ |a| = |b| = |c| \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -II|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|53 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If the equations 2x+3y+1=0,2x+y-1=0 and ax+2y-b=0 are consistent, then

If c<1 and the system of equations x+y-1=0,2x-y-c=0, and bx+3by-c=0 is consistent,then the possible real values of b are b epsilon(-3(3)/(4))quad b.b epsilon(-(3)/(2),4) c.be (-(3)/(4),3) d.none of these

If a, b, c are non - zero real numbers, the system of equations y+z=a+2x, x+z=b+2y, x+y=c+2z is consistent and b=4a+(c )/(4) , then the sum of the roots of the equation at^(2)+bt+c=0 is

The value of a such that the system of equations x-2y+z=-4, 2x – y +2z = 2 and x+y+az = 4, has no solution , is a) 0 b)1 c)3 d)-1

The number of real values of lambda for which the system of linear equations 2x+4y-lambda z=0,4x+lambda y+2z=0,lambda x+2y+2z=0 has infinitely many solutions,is: (A)0(B)1(C)2(D)3

A straight line through A(2, 1) is such that its intercept between the axis is bisected at A . its equation is: (a) 2x+y-4 = 0 , (b) x + 2y - 4 = 0 , (C) x + 2y - 4 = 0 , (d) x + 2y - 2 = 0

Given the four lines with the equations x+2y-3=0 , 3x+4y-7=0 , 2x+3y-4=0 , 4x+5y-6=0 , then

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II
  1. In a set A=(3^3,7^3,11^3,15^3,……) if 9 elements are selected from set ...

    Text Solution

    |

  2. If ai,i=1,2,....,9 are perfect odd squares, then |[a1,a2,a3],[a4,a5,a6...

    Text Solution

    |

  3. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |

  4. If a^2+8b^2+2c^2+2d^2-4ab-4bc-4bd=0 ,then the value of |{:(a,b),(c,d):...

    Text Solution

    |

  5. If ai,i=1,2,....,9 are perfect odd squares, then |[a1,a2,a3],[a4,a5,a6...

    Text Solution

    |

  6. If Deltar=|[2^(r-1),1/(r(r+1)),sin rtheta],[x, y, z],[2^n-1, n/(n+1),(...

    Text Solution

    |

  7. If equations a^2x+b^2y+c^2=0,a^4x+b^4y+c^4=0 and x+y+1=0 are consisten...

    Text Solution

    |

  8. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  9. If |{:(a, b, aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c," "0):}|=0 t...

    Text Solution

    |

  10. यदि f(x)=|(0,x-a,x-b),(x-a,0,x-c),(x-b,x-c,0)|, तब :

    Text Solution

    |

  11. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  12. The value of x satisfying |{:(x-a,b,c),(a,x+b,c),(a,b,x+c):}|=0 is

    Text Solution

    |

  13. If f(x), g(x) and h(x) are polynomials of degree 4 and |{:(f(x),g(x)...

    Text Solution

    |

  14. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  15. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  16. If a,b,c are sides of DeltaABC such that |{:(c,bcosB+cbeta,acosA+balph...

    Text Solution

    |

  17. If Delta(x)=|{:(x^2+4x-3,2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-6x+1,16x-6...

    Text Solution

    |

  18. Let ai^2+bi^2+ci^2=1 (for i=1,2,3) and aiaj+bibj+cicj=0 (i != j;i,j=1...

    Text Solution

    |

  19. Suppose |{:(1+x,x,x^2),(x,1+x,x^2),(x^2,x,1+x):}|=Px^5+Qx^4+Rx^3+Mx^2+...

    Text Solution

    |