Home
Class 12
MATHS
The value of x satisfying |{:(x-a,b,c),(...

The value of x satisfying `|{:(x-a,b,c),(a,x+b,c),(a,b,x+c):}|=0` is

A

0

B

a+b+c

C

`-(a+b+c)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the given matrix and set it equal to zero. The matrix is: \[ \begin{vmatrix} x - a & b & c \\ a & x + b & c \\ a & b & x + c \end{vmatrix} \] Let's denote this determinant as \( D \). ### Step 1: Write the determinant We can express the determinant \( D \) as follows: \[ D = \begin{vmatrix} x - a & b & c \\ a & x + b & c \\ a & b & x + c \end{vmatrix} \] ### Step 2: Expand the determinant We can use the method of cofactor expansion along the first row to expand the determinant: \[ D = (x - a) \begin{vmatrix} x + b & c \\ b & x + c \end{vmatrix} - b \begin{vmatrix} a & c \\ a & x + c \end{vmatrix} + c \begin{vmatrix} a & x + b \\ a & b \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now, we need to calculate each of the 2x2 determinants: 1. For \( \begin{vmatrix} x + b & c \\ b & x + c \end{vmatrix} \): \[ = (x + b)(x + c) - bc = x^2 + (b + c)x + bc \] 2. For \( \begin{vmatrix} a & c \\ a & x + c \end{vmatrix} \): \[ = a(x + c) - ac = ax \] 3. For \( \begin{vmatrix} a & x + b \\ a & b \end{vmatrix} \): \[ = ab - a(x + b) = ab - ax - ab = -ax \] ### Step 4: Substitute back into the determinant Now substituting these back into \( D \): \[ D = (x - a)(x^2 + (b + c)x + bc) - b(ax) + c(-ax) \] ### Step 5: Simplify the expression Expanding \( D \): \[ D = (x - a)(x^2 + (b + c)x + bc) - abx + c(-ax) \] This simplifies to: \[ D = (x - a)(x^2 + (b + c)x + bc) - (ab + ac)x \] ### Step 6: Set the determinant to zero To find the value of \( x \), we set \( D = 0 \): \[ (x - a)(x^2 + (b + c)x + bc) - (ab + ac)x = 0 \] ### Step 7: Solve the equation This is a polynomial equation in \( x \). We can factor or use the quadratic formula to find the roots. ### Step 8: Find the roots The roots of the polynomial will give us the values of \( x \) that satisfy the original determinant equation. ### Final Step: Conclusion The values of \( x \) that satisfy the equation will depend on the coefficients \( a, b, c \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -II|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|53 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If |(x +a,b,c),(a,x +b,c),(a,b,x +c)| = 0 , then x equals

Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

If a != b != c , are value of x which satisfies the equation |(0,x -a,x -b),(x +a,0,x -c),(x +b,x +c,0)| = 0 is given by

Solve the equation |{:(x+a,c+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0

The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are different) is satisfied by (A) x=(a+b+c0 (B) x= 1/3 (a+b+c) (C) x=0 (D) none of these

If a + b + c = 0, then one of the solution of |(a-x,c,b),(c,b-x,a),(b,a,c-x)| = 0 is

|[x+a, b, c], [a, x+b, c], [b, b, x+c]|=0

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II
  1. In a set A=(3^3,7^3,11^3,15^3,……) if 9 elements are selected from set ...

    Text Solution

    |

  2. If ai,i=1,2,....,9 are perfect odd squares, then |[a1,a2,a3],[a4,a5,a6...

    Text Solution

    |

  3. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |

  4. If a^2+8b^2+2c^2+2d^2-4ab-4bc-4bd=0 ,then the value of |{:(a,b),(c,d):...

    Text Solution

    |

  5. If ai,i=1,2,....,9 are perfect odd squares, then |[a1,a2,a3],[a4,a5,a6...

    Text Solution

    |

  6. If Deltar=|[2^(r-1),1/(r(r+1)),sin rtheta],[x, y, z],[2^n-1, n/(n+1),(...

    Text Solution

    |

  7. If equations a^2x+b^2y+c^2=0,a^4x+b^4y+c^4=0 and x+y+1=0 are consisten...

    Text Solution

    |

  8. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  9. If |{:(a, b, aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c," "0):}|=0 t...

    Text Solution

    |

  10. यदि f(x)=|(0,x-a,x-b),(x-a,0,x-c),(x-b,x-c,0)|, तब :

    Text Solution

    |

  11. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  12. The value of x satisfying |{:(x-a,b,c),(a,x+b,c),(a,b,x+c):}|=0 is

    Text Solution

    |

  13. If f(x), g(x) and h(x) are polynomials of degree 4 and |{:(f(x),g(x)...

    Text Solution

    |

  14. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  15. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  16. If a,b,c are sides of DeltaABC such that |{:(c,bcosB+cbeta,acosA+balph...

    Text Solution

    |

  17. If Delta(x)=|{:(x^2+4x-3,2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-6x+1,16x-6...

    Text Solution

    |

  18. Let ai^2+bi^2+ci^2=1 (for i=1,2,3) and aiaj+bibj+cicj=0 (i != j;i,j=1...

    Text Solution

    |

  19. Suppose |{:(1+x,x,x^2),(x,1+x,x^2),(x^2,x,1+x):}|=Px^5+Qx^4+Rx^3+Mx^2+...

    Text Solution

    |