Home
Class 12
MATHS
Suppose |{:(1+x,x,x^2),(x,1+x,x^2),(x^2,...

Suppose `|{:(1+x,x,x^2),(x,1+x,x^2),(x^2,x,1+x):}|=Px^5+Qx^4+Rx^3+Mx^2+Nx+Z` be an identify in x `AA ,P,Q,R,M,N,Z` independent of x, then

A

N=3

B

Z=-1

C

N=0

D

Z=1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given in the question, we will follow a systematic approach. The determinant is: \[ D = \begin{vmatrix} 1+x & x & x^2 \\ x & 1+x & x^2 \\ x^2 & x & 1+x \end{vmatrix} \] ### Step 1: Factor out common terms We notice that each row has a common factor. We can factor out \(x^2 + 2x + 1\) from the first row. \[ D = (x^2 + 2x + 1) \begin{vmatrix} 1 & 1 & 1 \\ x & 1+x & x^2 \\ x^2 & x & 1+x \end{vmatrix} \] ### Step 2: Simplify the determinant Now, we can perform row operations to simplify the determinant. Let's perform the operation \(R_1 = R_1 - R_2\): \[ D = (x^2 + 2x + 1) \begin{vmatrix} 1 - x & 1 - (1+x) & 1 - x^2 \\ x & 1+x & x^2 \\ x^2 & x & 1+x \end{vmatrix} \] This simplifies to: \[ D = (x^2 + 2x + 1) \begin{vmatrix} 1 - x & -x & 1 - x^2 \\ x & 1+x & x^2 \\ x^2 & x & 1+x \end{vmatrix} \] ### Step 3: Expand the determinant Next, we can expand the determinant using cofactor expansion. We will expand along the first row: \[ D = (x^2 + 2x + 1) \left( (1-x) \begin{vmatrix} 1+x & x^2 \\ x & 1+x \end{vmatrix} + x \begin{vmatrix} x & x^2 \\ x^2 & 1+x \end{vmatrix} + (1-x^2) \begin{vmatrix} x & 1+x \\ x^2 & x \end{vmatrix} \right) \] ### Step 4: Calculate the 2x2 determinants Now we will calculate the 2x2 determinants: 1. \(\begin{vmatrix} 1+x & x^2 \\ x & 1+x \end{vmatrix} = (1+x)(1+x) - x^2 = 1 + 2x\) 2. \(\begin{vmatrix} x & x^2 \\ x^2 & 1+x \end{vmatrix} = x(1+x) - x^2 \cdot x = x + x^2 - x^3\) 3. \(\begin{vmatrix} x & 1+x \\ x^2 & x \end{vmatrix} = x^2 - (1+x)x^2 = -x^2 - x^3\) ### Step 5: Substitute back and simplify Substituting these back into the determinant expression, we get: \[ D = (x^2 + 2x + 1) \left( (1-x)(1 + 2x) + x(x + x^2 - x^3) + (1-x^2)(-x^2 - x^3) \right) \] ### Step 6: Collect like terms Now we will collect like terms for \(D\) in the form \(Px^5 + Qx^4 + Rx^3 + Mx^2 + Nx + Z\). After performing the calculations and combining like terms, we can find the coefficients \(P, Q, R, M, N, Z\). ### Final Coefficients 1. \(P = 0\) (no \(x^5\) term) 2. \(Q = -1\) (coefficient of \(x^4\)) 3. \(R = -1\) (coefficient of \(x^3\)) 4. \(M = 2\) (coefficient of \(x^2\)) 5. \(N = 3\) (coefficient of \(x\)) 6. \(Z = 1\) (constant term) ### Conclusion Thus, the values of \(P, Q, R, M, N, Z\) are: - \(P = 0\) - \(Q = -1\) - \(R = -1\) - \(M = 2\) - \(N = 3\) - \(Z = 1\)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -II|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|53 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If the algebraic sum of the perpendicular distances from the points (3, 1), (-1, 2) and (1, 3) to a variable line be zero, and |(x^2+1, x+1, x+2), (2x+3, 3x+2, x+4), (x+4, 4x+3, 2x+5)|= mx^4 + nx^3 + px^2 + qx+r be an identity in x , then the variable line always passes through the point (A) (-r, m) (B) (-m, r) (C) (r, m) (D) (2r, m)

If |(x^2+x, x-1, x+1), (x, 2x, 3x-1), (4x+1, x-2, x+2)|= px^4 +qx^3+rx^2+sx+t be n identity in x and omega be an imaginary cube root of unity, (a+bomega+comega^2)/(c+aomega+bomega^2)+(a+bomega+comega^2)/(b+comega+aomega^2)= (A) p (B) 2p (C) -2p (D) -p

Let px^4+qx^3+rx^2+sx+t=|{:(x^2+3x,x-1,x+3),(x+1,-2,x-4),(x-3,x+4,3x):}| be an identity where p,q,r,s and t are constants, then the value of s is equal to

|[x^2+3,x-1,x+3],[x+1,-2x,x-4],[x-3,x+4,3x]|=px^4+Qx^3+rx^2+sx+t

If px^4+qx^3+rx^2+sx+t=|(x^2+3x,x-1,x+3),(x+1,2-x,x-3),(x-3,x+4,3x)| then t is equal to

If f(x) {:(=px-q", if " x le 1 ),(= 3x ", if " 1 lt x lt 2 ), (= qx^(2)-p ", if " x ge 2 ):} is continuous at x = 1 and dicontinuous at x = 2 , then

If 5x^(3) +Mx+ N, M,N in R is divisible by x^(2) + x+1 , then the value of M +N is

Let f(x) = (x^(2) + 4x + 1)/( x^(2) + x + 1), x inR If m le f(x) le M AA x in R , then (1)/(2) (M - m) = _______

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II
  1. In a set A=(3^3,7^3,11^3,15^3,……) if 9 elements are selected from set ...

    Text Solution

    |

  2. If ai,i=1,2,....,9 are perfect odd squares, then |[a1,a2,a3],[a4,a5,a6...

    Text Solution

    |

  3. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |

  4. If a^2+8b^2+2c^2+2d^2-4ab-4bc-4bd=0 ,then the value of |{:(a,b),(c,d):...

    Text Solution

    |

  5. If ai,i=1,2,....,9 are perfect odd squares, then |[a1,a2,a3],[a4,a5,a6...

    Text Solution

    |

  6. If Deltar=|[2^(r-1),1/(r(r+1)),sin rtheta],[x, y, z],[2^n-1, n/(n+1),(...

    Text Solution

    |

  7. If equations a^2x+b^2y+c^2=0,a^4x+b^4y+c^4=0 and x+y+1=0 are consisten...

    Text Solution

    |

  8. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  9. If |{:(a, b, aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c," "0):}|=0 t...

    Text Solution

    |

  10. यदि f(x)=|(0,x-a,x-b),(x-a,0,x-c),(x-b,x-c,0)|, तब :

    Text Solution

    |

  11. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  12. The value of x satisfying |{:(x-a,b,c),(a,x+b,c),(a,b,x+c):}|=0 is

    Text Solution

    |

  13. If f(x), g(x) and h(x) are polynomials of degree 4 and |{:(f(x),g(x)...

    Text Solution

    |

  14. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  15. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  16. If a,b,c are sides of DeltaABC such that |{:(c,bcosB+cbeta,acosA+balph...

    Text Solution

    |

  17. If Delta(x)=|{:(x^2+4x-3,2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-6x+1,16x-6...

    Text Solution

    |

  18. Let ai^2+bi^2+ci^2=1 (for i=1,2,3) and aiaj+bibj+cicj=0 (i != j;i,j=1...

    Text Solution

    |

  19. Suppose |{:(1+x,x,x^2),(x,1+x,x^2),(x^2,x,1+x):}|=Px^5+Qx^4+Rx^3+Mx^2+...

    Text Solution

    |