Home
Class 12
MATHS
The expression sqrt(12+6sqrt(3))+sqrt(12...

The expression `sqrt(12+6sqrt(3))+sqrt(12-6sqrt(3))` simplifies to

A

4

B

`2sqrt(3)`

C

`3sqrt(3)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{12 + 6\sqrt{3}} + \sqrt{12 - 6\sqrt{3}} \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ x = \sqrt{12 + 6\sqrt{3}} + \sqrt{12 - 6\sqrt{3}} \] ### Step 2: Square Both Sides To eliminate the square roots, we square both sides: \[ x^2 = \left(\sqrt{12 + 6\sqrt{3}} + \sqrt{12 - 6\sqrt{3}}\right)^2 \] ### Step 3: Expand the Right Side Using the formula \( (a + b)^2 = a^2 + 2ab + b^2 \), we expand: \[ x^2 = \left(\sqrt{12 + 6\sqrt{3}}\right)^2 + 2\sqrt{12 + 6\sqrt{3}}\sqrt{12 - 6\sqrt{3}} + \left(\sqrt{12 - 6\sqrt{3}}\right)^2 \] This simplifies to: \[ x^2 = (12 + 6\sqrt{3}) + (12 - 6\sqrt{3}) + 2\sqrt{(12 + 6\sqrt{3})(12 - 6\sqrt{3})} \] ### Step 4: Simplify the Expression Combining the terms gives: \[ x^2 = 12 + 12 + 2\sqrt{(12 + 6\sqrt{3})(12 - 6\sqrt{3})} \] \[ x^2 = 24 + 2\sqrt{(12)^2 - (6\sqrt{3})^2} \] ### Step 5: Calculate the Product Inside the Square Root Calculating \( (12)^2 - (6\sqrt{3})^2 \): \[ (12)^2 = 144 \quad \text{and} \quad (6\sqrt{3})^2 = 36 \times 3 = 108 \] Thus, \[ x^2 = 24 + 2\sqrt{144 - 108} = 24 + 2\sqrt{36} \] \[ \sqrt{36} = 6 \] So, \[ x^2 = 24 + 2 \times 6 = 24 + 12 = 36 \] ### Step 6: Take the Square Root Taking the square root of both sides: \[ x = \sqrt{36} = 6 \] ### Conclusion The simplified expression is: \[ \sqrt{12 + 6\sqrt{3}} + \sqrt{12 - 6\sqrt{3}} = 6 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

(b) (sqrt(12))/(sqrt(3)) simplify

Value of sqrt(28 - 6sqrt(3)) + sqrt(28 + 6sqrt(3)) is

sqrt(3)sqrt(4)sqrt(12)=

simplify the expression (sqrt(2)+sqrt(3))/(sqrt(3)+sqrt(2))

Evaluate (sqrt(6)+sqrt(3))/(sqrt(6).sqrt(3))

The number N=sqrt(2+sqrt(5)-sqrt(6-3sqrt(5)+sqrt(14-6sqrt(5)))) simplifies to

4sqrt(6)-8sqrt(16)+3sqrt(6)+12sqrt(10)

simplify the expression (sqrt(3)+sqrt(7))/(sqrt(3)-sqrt(7))

Simplify 6sqrt(3)+ 5sqrt(12)

The expression ((5sqrt(3) + sqrt(50))(5-sqrt(24)))/(sqrt(75) - 5sqrt(2)) simplifies to