Home
Class 12
MATHS
For all positive numbers x,y,z the produ...

For all positive numbers x,y,z the product `((1)/(x+y+z))((1)/(x)+(1)/(y)+(1)/(z))((1)/(xy+yz+zx))((1)/(xy)+(1)/(yz)+(1)/(zx))` equals

A

`x^(-2)y^(-2)z^(-2)`

B

`x^(-2)+y^(-2)+z^(-2)`

C

`(x+y+z)^(-2)`

D

`(1)/(xyz)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If V is the volume of a cuboid of dimensions x,y,z and A is its surface area,then (A)/(V)x^(2)y^(2)z^(2)( b) (1)/(2)((1)/(xy)+(1)/(yz)+(1)/(zx))(1)/(2)((1)/(x)+(1)/(y)+(1)/(z))(d)(1)/(xyz)

Simplify- (x-y)/(xy)+(y-z)/(yz)+(z-x)/(zx)

If a^(x)=b, b^(y)=c, c^(z)=a , then what is the value of (1)/((xy+yz+zx))((1)/(x)+(1)/(y)+(1)/(z)) ?

If x>y>z>0, then find the value of cot^(-1)(xy+1)/(x-y)+cot^(-1)(yz+1)/(zy-z)+cot^(-1)(zx+1)/(z-x)

If xy+yz+zx=1 then sum(x+y)/(1-xy)=

If xy + yz + zx = 1 find (x+y)/(1-xy) + (y+z)/(1-yz) + (z + x)/(1-zx) = ?