Home
Class 12
MATHS
Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqr...

Let `T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2)` then-

A

`T lt 1`

B

`T = 1`

C

`1 lt T lt 2`

D

`T lt 2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7))-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

( Show that: )/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-sqrt(4))=?

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)