Home
Class 12
PHYSICS
In a regular hexagon two vec(PQ)=vecA, ...

In a regular hexagon two `vec(PQ)=vecA, vec(RP)=vecB`. Express other vectors's in term of them :-

Text Solution

Verified by Experts

The correct Answer is:
(A)-(S);(B)-(P);(C)-(R);(D)-(T)
Promotional Banner

Topper's Solved these Questions

  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (O-2) Single Correct Type Questions.|17 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (O-2) Multiple Correct Type Questions.|7 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (O-1) ParagraphType Questions.|2 Videos
  • TEST PAPERS

    ALLEN|Exercise MATHS|18 Videos
  • WAVE OPTICS

    ALLEN|Exercise Exercise 2 (Previous Year Questions)|7 Videos

Similar Questions

Explore conceptually related problems

In a regular hexagon ABCDEF,vec AE

ABCDEF is a regular hexagon.Find the vector vec AB+vec AC+vec AD+vec AE+vec AF in terms of the vector vec AD

If ABCDEF is a regular hexagon with vec AB=vec a and vec BC=vec b, then vec CE equals

In a regular hexagon ABCDEF,vec AB=a,vec BC=b and vec CD=c. Then ,vec AE=

In a regualr hexagon ABCDEF, A vecB = vec a, B vec C = vecb and C vec D = vec c. " Then " A vec E =

In trapezium PQRS, given that QR|| PS and 2QR=PS. If vec(PQ)=veca,vec(QR)=vecb and vec(RS)=vecc , express vecq in terms vecb and vecc

Let O be the origin , and vec(OX),vec(OY),vec(OZ) be three unit vector in the directions of the sides vec(OR) , vec(RP) , vec(PQ) respectively, of a triangle PQR, Then , |vec(OX) xx vec(OY)| =

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. |vec(OX)xxvec(OY)|=

Let the vectors vec(PQ),vec(QR),vec(RS), vec(ST), vec(TU) and vec(UP) represent the sides of a regular hexagon. Statement I: vec(PQ) xx (vec(RS) + vec(ST)) ne vec0 Statement II: vec(PQ) xx vec(RS) = vec0 and vec(PQ) xx vec(RS) = vec0 and vec(PQ) xx vec(ST) ne vec0 For the following question, choose the correct answer from the codes (A), (B) , (C) and (D) defined as follows:

Let ABCDEF be a regular hexagon and vec AB=vec a,vec BC=vec b,vec CD=vec c then vec AE is