Home
Class 12
PHYSICS
A cube of side l is p laced in a uniform...

A cube of side l is p laced in a uniform field E, where `E=E hati`. The net electric flux through the cube is

A

zero

B

`l^(2)E`

C

`4l^(2)E`

D

`6l^(2)E`

Text Solution

AI Generated Solution

The correct Answer is:
To find the net electric flux through a cube placed in a uniform electric field \( \mathbf{E} = E \hat{i} \), we can follow these steps: ### Step 1: Understand the Geometry of the Cube Consider a cube of side length \( l \). The cube has six faces, and we need to analyze the orientation of these faces with respect to the electric field direction. ### Step 2: Identify the Direction of the Electric Field The electric field is given as \( \mathbf{E} = E \hat{i} \), which means it is directed along the positive x-axis. ### Step 3: Determine the Area Vectors of the Cube Faces Each face of the cube has an area \( A = l^2 \). The area vectors for the faces of the cube are as follows: - Face 1 (front face): Area vector \( \mathbf{A}_1 = l^2 \hat{i} \) - Face 2 (back face): Area vector \( \mathbf{A}_2 = -l^2 \hat{i} \) - Face 3 (left face): Area vector \( \mathbf{A}_3 = -l^2 \hat{j} \) - Face 4 (right face): Area vector \( \mathbf{A}_4 = l^2 \hat{j} \) - Face 5 (top face): Area vector \( \mathbf{A}_5 = l^2 \hat{k} \) - Face 6 (bottom face): Area vector \( \mathbf{A}_6 = -l^2 \hat{k} \) ### Step 4: Calculate the Electric Flux Through Each Face The electric flux \( \Phi \) through a surface is given by the formula: \[ \Phi = \mathbf{E} \cdot \mathbf{A} = EA \cos \theta \] where \( \theta \) is the angle between the electric field vector and the area vector. - For Face 1 (front face): \[ \Phi_1 = E \cdot (l^2 \hat{i}) = E l^2 \cdot 1 = E l^2 \] - For Face 2 (back face): \[ \Phi_2 = E \cdot (-l^2 \hat{i}) = E l^2 \cdot (-1) = -E l^2 \] - For Face 3 (left face): \[ \Phi_3 = E \cdot (-l^2 \hat{j}) = E l^2 \cdot 0 = 0 \] - For Face 4 (right face): \[ \Phi_4 = E \cdot (l^2 \hat{j}) = E l^2 \cdot 0 = 0 \] - For Face 5 (top face): \[ \Phi_5 = E \cdot (l^2 \hat{k}) = E l^2 \cdot 0 = 0 \] - For Face 6 (bottom face): \[ \Phi_6 = E \cdot (-l^2 \hat{k}) = E l^2 \cdot 0 = 0 \] ### Step 5: Sum the Electric Fluxes Now, we can find the total electric flux through the cube by summing the fluxes through all six faces: \[ \Phi_{\text{net}} = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 + \Phi_5 + \Phi_6 \] Substituting the values we calculated: \[ \Phi_{\text{net}} = E l^2 - E l^2 + 0 + 0 + 0 + 0 = 0 \] ### Conclusion The net electric flux through the cube is: \[ \Phi_{\text{net}} = 0 \]

To find the net electric flux through a cube placed in a uniform electric field \( \mathbf{E} = E \hat{i} \), we can follow these steps: ### Step 1: Understand the Geometry of the Cube Consider a cube of side length \( l \). The cube has six faces, and we need to analyze the orientation of these faces with respect to the electric field direction. ### Step 2: Identify the Direction of the Electric Field The electric field is given as \( \mathbf{E} = E \hat{i} \), which means it is directed along the positive x-axis. ...
Promotional Banner

Topper's Solved these Questions

  • ELECTRIC CHARGES AND FIELDS

    NARAYNA|Exercise EXERCISE -3|50 Videos
  • ELECTRIC CHARGES AND FIELDS

    NARAYNA|Exercise EXERCISE -4|43 Videos
  • ELECTRIC CHARGES AND FIELDS

    NARAYNA|Exercise EXERCISE -2 (C.W.)|39 Videos
  • DUAL NATURE

    NARAYNA|Exercise LEVEL-II (H.W)|17 Videos
  • ELECTRO MAGNETIC INDUCTION

    NARAYNA|Exercise Level-II (H.W)|23 Videos

Similar Questions

Explore conceptually related problems

A hemispherical bowl of radius r is placed in uniform electric field E . The electric flux passing through the bowl is

A cube of side L encloses a charge Q at its centre , electric flux through the cube is

A cone lies in a uniform electric field E as shown in figure. The electric flux entering the cone is

The wedge-shaped surface in figure is in a region of uniform electric field E_(0) along x axis. The net electric flux for the entire closed surface is -

In figure , a cone lies in a uniform electric field E. Determine the electric flux entering the cone. .

A very small sphere having a charge q, uniformly distributed throughout its volume, is placed at the vertex of a cube of side a. The electric flux through the cube is

A cylinder of radius R and length L is placed in a uniform electric field E parallel to the axis. The total flux for the surface of the cylinder is given by

NARAYNA-ELECTRIC CHARGES AND FIELDS-EXERCISE -2 (H.W)
  1. An electric dipole consists of two opposite charges of magnitude 1muC ...

    Text Solution

    |

  2. An electric dipole is formed by two particles fixed at the ends of a l...

    Text Solution

    |

  3. For an electric dipole consisting of a positive and equal negative cha...

    Text Solution

    |

  4. Two equal charges q of opposite sign are separated by a small distance...

    Text Solution

    |

  5. The inward and outward electric flux for a closed surface unit of N-m^...

    Text Solution

    |

  6. A cylinder of radius R and length L is placed in the uniform electric ...

    Text Solution

    |

  7. A cube of arranged such that its length ,breadth ,height are alongX,Y,...

    Text Solution

    |

  8. v33.2

    Text Solution

    |

  9. A sheet of semi circular paper (radius R) is turned around the centre ...

    Text Solution

    |

  10. In a uniform electric field find the total flux associated with the gi...

    Text Solution

    |

  11. An infinitely long thin straight wire has uniform linear charge densit...

    Text Solution

    |

  12. Consider two concentric spherical surface S(1) with radius a and S(2) ...

    Text Solution

    |

  13. The electric field on two sides of a large charged plate is shown in f...

    Text Solution

    |

  14. A Gausian sphere of radius r intercepts a line with a uniform charge d...

    Text Solution

    |

  15. A cube of side l is p laced in a uniform field E, where E=E hati. The ...

    Text Solution

    |

  16. A charge +q is placed at the mid point of a cube of side L. The electr...

    Text Solution

    |

  17. An injfinite large sheet has charg density sigma c//m^(2) Find electri...

    Text Solution

    |

  18. A charge of 8.85C is placed at the centre of a spherical Gaussian surf...

    Text Solution

    |

  19. The inward and outward electric flux for a closed surface unit of N-m^...

    Text Solution

    |

  20. The total flux linked with unit negative charge put in air is

    Text Solution

    |