Home
Class 12
MATHS
Solve log(x)(x^(2)-1) le 0....

Solve `log_(x)(x^(2)-1) le 0`.

Text Solution

Verified by Experts

The correct Answer is:
` x in (1, sqrt2)`

Given ` log_(x)(x^(2)-1) le 0`
If ` x gt 1`
`rArr 0 lt x^(2) - 1 le 1`
` rArr 1 lt x^(2) le 2`
` rArr x in [-sqrt2, -1) uu (1, sqrt2]`
` rArr x in (1, sqrt2]`
If ` 0 lt x lt 1`
` rArr x^(2) - 1 ge 1`
`rArr x^(2) ge 2`
`rArr x in ( - infty, -sqrt2]uu[sqrt2, infty)`
` rArr x = phi`
Thus,`x in (1, sqrt2]`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Single)|50 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Solve log_(x)(x^(2)-1)<=0

Solve log_(10)(x^(2)-2x-2) le 0 .

Solve log_(x+3)(x^(2)-x) lt 1 .

Solve :log_(0.3)(x^(2)-x+1)>0

Solve log_(1-x)(x-2) ge-1 .

Solve log_(3)(x-2) le 2 .

Solve log_(x-2)(3x^2-x-1)>0 .

Solve :log_((x+3))(x^(2)-x)<1

Solve 1 lt log_(2)(x-2) le 2 .

Solve log(-x)=2log(x+1)