Home
Class 11
CHEMISTRY
A solid having density of 9 xx 10^(3) kg...

A solid having density of `9 xx 10^(3) kg m^(-3)` forms face centred cubic crystals of edge length `200 sqrt2` pm. What is the molar mass of the solid ? [Avogadro constant `~= 6 xx 10^(23) mol^(-1), pi ~= 3`]

A

`0.0432 kg mol^(-1)`

B

`0.0305 kg mol^(-1)`

C

`0.4320 kg mol^(-1)`

D

`0.0216 kg mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the molar mass of the solid, we can use the formula for density in relation to the face-centered cubic (FCC) structure. The formula is: \[ \text{Density} (d) = \frac{Z \cdot M}{N_A \cdot a^3} \] Where: - \( d \) = density of the solid (in kg/m³) - \( Z \) = number of atoms per unit cell (for FCC, \( Z = 4 \)) - \( M \) = molar mass of the solid (in kg/mol) - \( N_A \) = Avogadro's number (approximately \( 6 \times 10^{23} \) mol⁻¹) - \( a \) = edge length of the unit cell (in meters) ### Step-by-Step Solution: 1. **Identify the given values**: - Density \( d = 9 \times 10^3 \, \text{kg/m}^3 \) - Edge length \( a = 200\sqrt{2} \, \text{pm} = 200\sqrt{2} \times 10^{-12} \, \text{m} \) - Avogadro's number \( N_A = 6 \times 10^{23} \, \text{mol}^{-1} \) - For FCC, \( Z = 4 \) 2. **Convert the edge length from picometers to meters**: \[ a = 200\sqrt{2} \times 10^{-12} \, \text{m} \] 3. **Calculate \( a^3 \)**: \[ a^3 = (200\sqrt{2} \times 10^{-12})^3 = 200^3 \cdot (2^{3/2}) \cdot (10^{-12})^3 = 8 \times 10^6 \cdot 200^3 \cdot 10^{-36} \, \text{m}^3 \] \[ = 8 \times 8 \times 10^{-30} = 64 \times 10^{-30} \, \text{m}^3 \] 4. **Rearrange the density formula to solve for molar mass \( M \)**: \[ M = \frac{d \cdot N_A \cdot a^3}{Z} \] 5. **Substitute the known values into the equation**: \[ M = \frac{(9 \times 10^3) \cdot (6 \times 10^{23}) \cdot (200\sqrt{2} \times 10^{-12})^3}{4} \] 6. **Calculate \( M \)**: \[ M = \frac{(9 \times 10^3) \cdot (6 \times 10^{23}) \cdot (200\sqrt{2})^3 \cdot 10^{-36}}{4} \] \[ = \frac{(9 \times 10^3) \cdot (6 \times 10^{23}) \cdot (8 \times 10^6) \cdot 10^{-36}}{4} \] \[ = \frac{(9 \cdot 6 \cdot 8) \times 10^{3 + 23 + 6 - 36}}{4} \] \[ = \frac{432 \times 10^{-4}}{4} = 108 \times 10^{-4} \, \text{kg/mol} \] \[ = 0.0108 \, \text{kg/mol} = 10.8 \, \text{g/mol} \] ### Final Answer: The molar mass of the solid is approximately **10.8 g/mol**.
Promotional Banner

Topper's Solved these Questions

  • SOLID STATE

    RESONANCE|Exercise APSP|30 Videos
  • SOLID STATE

    RESONANCE|Exercise Part-II National standard examination in chemistry|27 Videos
  • SOLID STATE

    RESONANCE|Exercise Exercise -3 (Part-II)|18 Videos
  • S BLOCK ELEMENTS

    RESONANCE|Exercise INORGANIC CHEMISTRY(s-Block Elements)|36 Videos
  • STRUCTURAL IDENTIFICATION & PRACTICAL ORGANIC CHEMISTRY

    RESONANCE|Exercise Section -B|18 Videos

Similar Questions

Explore conceptually related problems

A solid having density of 9 xx 10 ^3 forms face centerd cubic crystals of edge leght 200 sqrt(2)) Pm. What is the molar mass of the solid ? [Avogadro castant cong 6 xx 10 ^(23) mol ^(-1) , pi cong 3 ]

A substance has density of 2 kg dm^(-3) and it crystallizes to fcc lattice with edge length equal to 700 pm . The molar mass of the substance is _______ .

The unit of an element of atomic mass 96 and density 10.3 g cm^(-3) is a cube with edge length of 314 pm. Find the structure of the crystal lattice (simple cubic, FCC or BCC) (Avogadro's constant , N_0 = 6.023 xx 10^(23) mol^(-1))

A substance has a face centred cubic crystal with a density 1.984 g cm^(-3) and edge length 630 pm. Calculate the molar mass of the substance

The number of atoms in 2.4 g of body centred cubic crystal with edge length 200 pm is (density = 10 g cm^(-3), N_A = 6 xx 10^(23) atoms/mol)

A metal has an fcc latticed.The edge length of the unit cell is 404 pm .The density of the metal is 2.72 g//cm^(-3) .The molar mass of the metal is (N_(A) Avogadro's constant = 6.2 xx 10^(23) mol^(-1))