Home
Class 12
MATHS
If In= inte^(x)/(x^(n))dx= (-e^(x))/(k(1...

If `I_n= inte^(x)/(x^(n))dx= (-e^(x))/(k_(1)x^(n-1))+1/(k_(2)-1)I_(n-1)`, then `(k_(2)-k_(1))` is equal to:

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int \frac{e^x}{x^n} \, dx \) and compare it with the given equation: \[ I_n = -\frac{e^x}{k_1 x^{n-1}} + \frac{1}{k_2 - 1} I_{n-1} \] ### Step 1: Apply Integration by Parts We will use integration by parts where we let: - \( u = e^x \) (which implies \( du = e^x \, dx \)) - \( dv = \frac{1}{x^n} \, dx \) (which implies \( v = -\frac{1}{(n-1)x^{n-1}} \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I_n = \int e^x \cdot \frac{1}{x^n} \, dx = e^x \cdot \left(-\frac{1}{(n-1)x^{n-1}}\right) - \int \left(-\frac{1}{(n-1)x^{n-1}}\right) e^x \, dx \] This simplifies to: \[ I_n = -\frac{e^x}{(n-1)x^{n-1}} + \frac{1}{(n-1)} \int \frac{e^x}{x^{n-1}} \, dx \] ### Step 2: Recognize the Integral Notice that the remaining integral is \( I_{n-1} \): \[ I_n = -\frac{e^x}{(n-1)x^{n-1}} + \frac{1}{(n-1)} I_{n-1} \] ### Step 3: Compare with the Given Equation Now, we compare this result with the given equation: \[ I_n = -\frac{e^x}{k_1 x^{n-1}} + \frac{1}{k_2 - 1} I_{n-1} \] From our expression, we can identify: - \( k_1 = n - 1 \) - \( \frac{1}{k_2 - 1} = \frac{1}{(n-1)} \) ### Step 4: Solve for \( k_2 \) From \( \frac{1}{k_2 - 1} = \frac{1}{(n-1)} \), we can solve for \( k_2 \): \[ k_2 - 1 = n - 1 \implies k_2 = n \] ### Step 5: Calculate \( k_2 - k_1 \) Now we can find \( k_2 - k_1 \): \[ k_2 - k_1 = n - (n - 1) = 1 \] ### Final Answer Thus, the value of \( k_2 - k_1 \) is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise PART-III MATCH THE COLUMN|2 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-2 Part-2|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section E): Integration by trignometric functions:|6 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

int(1)/((x^(2)+k)^(n))dx

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

Knowledge Check

  • If sum_(k=1)^n ɸ(k)=2_n/(n+1),then sum_(k=1)^10 1/(ɸ(k)) is equal to

    A
    `11/20`
    B
    220
    C
    `55/18`
    D
    110
  • If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

    A
    `(1)/(e)`
    B
    e
    C
    `e-1`
    D
    None of these
  • If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

    A
    `I_(1)=I_(2)`
    B
    `2I_(1)=I_(2)`
    C
    `I_(1)=2I_(2)`
    D
    `I_(1)+I_(2)=0`
  • Similar Questions

    Explore conceptually related problems

    If (K_n)/( L_n)= 1024 where K_(n) = int_(0)^(1) x^(n) (2-x)^(n) dx, L_(n) = int_(0)^(1) x^(n) (1-x)^(n) dx , then n is equal to

    If sum_(n=1)^(5)(1)/(n(n+1)(n+2)(n+3))=(k)/(3), then k is equal to :-

    Let I_(n)= int_(0)^(1)(x ln x)^(n)dx, if I_(4)=k int_(0)^(1)x^(4)(ln x)^(3)dx, then |[k]| is equal to ([.] denotes greatest integer function).

    If I=sum_(k=2)^(10)int_(k)^(k^(2))(k-1)/(x(x-1))dx, then

    If I_(n)=int(sinx+cosx)^(n) dx, snd I_(n)=1/n(sinx+cosx)^(n-1)(sinx-cosx)+(2k)/(n) I_(n-2) then k=