Home
Class 12
MATHS
If F(x) = int(x+sinx)/(1+cosx)dx and F(0...

If `F(x) = int(x+sinx)/(1+cosx)dx` and `F(0)=0`then the value of `F(pi/2)` is

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-2 Part-2|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-2 Part-3|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Reduction Formulae|2 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

If F(x)=int(x+sin x)/(1+cos x)dx and F(0)=0 then the value of f((pi)/(2)) is

If F(x)=int((1+sin x)/(1+cos x))dx and F(0)=0 then the value of F(pi/2) is

Knowledge Check

  • If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

    A
    `1/(3+e)`
    B
    `(5-e)/(3-e)`
    C
    `(2+e)/(e-2)`
    D
    none of these
  • If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

    A
    `e((pi)/(4)-(1)/(2))+1`
    B
    `e((pi)/(4)+(1)/(2))+1`
    C
    `e((pi)/(2)-(1)/(4))+1`
    D
    `e^(-1)((pi)/(4)-(1)/(2))+1`
  • If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

    A
    1
    B
    n
    C
    `n//2`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If f(x)=int(sinx)/(cos^(2)x)(1-3sin^(3)x)dx , then value of (f(0)-f(pi)+(9pi)/2) is

    If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)

    If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

    If f(x)=(1+sinx-cosx)/(1-sinx-cosx), x ne 0 . The value of f(0) so that f is a continuous function is

    The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi . The value of f(pi) so that f(x) is continuous at x=pi is