Home
Class 12
MATHS
Consider lim(x to oo)((x^(3)+x^(2)+x+sin...

Consider `lim_(x to oo)((x^(3)+x^(2)+x+sinx)/(x^(2)+2cosx)-asinx-bx+c)=4`. Now, match the following lists and then choose the correct code.

Text Solution

Verified by Experts

The correct Answer is:
`(4)`

`underset(xtooo)lim((x^(3)+x^(2)+x+sinx)/(x^(2)+2cosx)-asinx-bx+c)=4`
`implies" "underset(xtooo)lim((x+1+(1)/(x)+(sinx)/(x^(2)))/(1+(2cosx)/(x^(2)))-asinx-bx+c)=4`
`implies" "underset(xtooo)lim(x+1-asinx-bx+c)=4`
`implies" "underset(xtooo)lim((1-b)x-asinx+1+c)=4`
`implies" "1-b=0,a=0" and "1+c=4`
`implies" "b=1,a=0" and "c=3`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Numerical)|23 Videos
  • LIMITS

    CENGAGE|Exercise JEE Main Previous Year|8 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Consider int(x^(3)+3x^(2)+2x+1)/(sqrt(x^(2)+x+1))dx =(ax^(2)+bx+c)sqrt(x^(2)+x+1)+lambda int(dx)/(sqrt(x^(2)+x+1)) Now, match the following lists and then choose the correct code. Codes: {:(,a,b,c,d),((1),q,p,s,r),((2),s,p,q,r),((3),r,q,p,s),((4),q,s,p,r):}

lim_(x rarr oo)(x+3)/(x^(2)+4)

lim_(x rarr oo)(x+3)/(x^(2)+4)

lim_(x rarr oo)(x+3)/(x^(2)+4)

lim_(x rarr oo)(x^(2)+bx+b)/(x^(2)+bx+c)=?

lim_(x rarr-oo)(3x^(3)+2x^(2)-7x+9)/(4x^(3)+9x-2)

lim_(x rarr oo) [(x^(2)+x+3)/(x^(2)-x+2)] ^(x) =

lim_(x rarr oo)(4+(3)/(x^(2)))=

lim_(x rarr oo)(2x+1)/(3x-2)