Home
Class 12
MATHS
LetL=lim(xto0) (a-sqrt(a^(2)-x^(2))-(x^(...

Let`L=lim_(xto0) (a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),agt0`. If L is finite, then

Text Solution

Verified by Experts

The correct Answer is:
A, C

`L=underset(xto0)lim(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4))`
`=underset(xto0)lim((1)/(x^(2)(a+sqrt(a^(2)-x^(2))))-(1)/(4x^(2)))`
`=underset(xto0)lim((4-a)-sqrt(a^(2)-x^(2)))/(4x^(2)(a+sqrt(a^(2)-x^(2))))`
Numerator` to" if "a=2` and then `L=(1)/(64)`.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise JEE Main Previous Year|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let L=lim_(x rarr0)(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>0. If L

Let L=lim_(x rarr0)(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>0 .If L is finite,then (a)a=2( b) a=1(c)L=(1)/(64) (d) L=(1)/(32)

Let L=lim_(xrarr0)(b-sqrt(b^(2)+x^(2))-(x^(2))/(4))/(x^(4)), b gt 0 . If L is finite, then

Let L=(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>=0 if L is finite then (1)/(8L)

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(xto0) (ln(2+x^(2))-ln(2-x^(2)))/(x^(2)) is equal to

Let L= lim_(x->0) (a-(a^3-x^3)^(1//3) - x^3/108)/(x^6); a>0 If L is finite, then L is