Home
Class 12
MATHS
Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)...

Let `f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x))` for `x!=1`

Text Solution

Verified by Experts

The correct Answer is:
C, D

`f(1^(+))=underset(hto0)lim(1-(1+h)(1+h))/(h)"cos"(1)/(h)`
`=underset(hto0)lim(-h^(2)-2h)/(h)"cos"(1)/(h)=underset(hto0)lim(-h-2)"cos"(1)/(h)`
Thus, `underset(xto1^(+))limf(x)` does nto exist.
`f(1^(-))=underset(hto0)lim(1-(1-h))/(h)"cos"(1)/(h)`
`=underset(hto0)lim(-1(1-h^(2)))/(h)"cos"(1)/(h)``=underset(hto0)lim(h^(2))/(h)"cos"(1)/(h)=underset(hto0)lim h"cos"(1)/(h)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise JEE Main Previous Year|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=((1-x(1+|1-x|))/(|1-x|))cos((1)/(1-x)) for x!=1

Let f(x)=(1-x(1+|1-x|))/(|1-x|)cos(1/(1-x)) for x!=1. Then: (A)(lim)_(n->1^-)f(x) does not exist (B)(lim)_(n->1^+)f(x) does not exist (C)(lim)_(n->1^-)f(x)=0 (D)(lim)_(n->1^+)f(x)=0

let ( f(x) = 1-|x| , |x| 1 ) g(x)=f(x+1)+f(x-1)

Let f(x)=sin^(-1)((1)/(|x^(2)-1|))+cos^(-1)((1-2|x|)/(3))

Let f(x)=x((1)/(x-1)+(1)/(x)+(1)/(x+1)),x>1

Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):}, then domain of f'(x) is:

let f(x)=(cos^(-1)(1-{x})sin^(-1)(1-{x}))/(sqrt(2{x}(1-{x}))) where {x} denotes the fractional part of x then

Let f(x) =cos ^(-1) (3x-1). Then , dom (f )=?

Let f(x)=(x)/(x+3) , then (1)/(f(x+1))-f((1)/(x+1))=?