Home
Class 12
MATHS
The largest value of the non-negative in...

The largest value of the non-negative integer a for which
`lim_(xto1) {(-ax+sin(x-1)+a)/(x+sin(x-1)a)}^((1-x)/(1-sqrt(x)))=(1)/(4)` is ___________.

Text Solution

Verified by Experts

The correct Answer is:
`(2)`

`underset(xto1)lim{(-ax+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=(1)/(4)`
`implies" "underset(xto1)lim{((sin(x-1))/((x-1))-a)/((sin(x-1))/((x-1))+1)}^(1+sqrt(x))=(1)/(4)`
`implies" "((1-a)/(2))^(1)=(1)/(4)`
`implies" "a=0,a=2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise JEE Main Previous Year|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The largets value of non negative integer for which lim_(x rarr1)((-ax+sin(x-1)+a]1-sqrt(x))/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=(1)/(4)

The largest value of non-negative integer a for which underset( x rarr 1 ) ( "lim"){ ( -ax+ sin ( x - 1) + a ) /(x + sin ( x - 1) -1)}^((1-x)/( 1- sqrt( x)) ) = ( 1)/( 4) is

What is lim_(xto0) (sqrt(1+x-1))/(x)

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(x rarr4)(sin(x-1))/(x^(3)-1)

Number of integral values of k for which lim_(xto1) sin^(-1)((k)/(log_(e)x)-(k)/(x-1)) exists is _________.

lim_(xto1) (1-x^(2))/(sin2pix) is equal to

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

Evaluate lim_(xto1) ("cos"(pi)/(2)x)/(1-sqrt(x))