Home
Class 12
MATHS
Let m and n be two positive integers gre...

Let `m` and `n` be two positive integers greater than 1. If
`lim_(ato0) (e^(cos(alpha^(n)))-e)/(alpha^(m))=-(e)/(2),`then the value of `(m)/(n)` is ___________.

Text Solution

Verified by Experts

The correct Answer is:
`(2)`

`mge2" and "nge2`
`underset(alphato0)lim(e^(cos(alpha^(n)))-e)/(alpha^(m))`
`=exxunderset(alphato0)lim(e^(cos(alpha^(n))-1)-1)/(cos(alpha^(n))-1)xx((cos(alpha^(n))-1)/((alpha^(n))^(2)))(alpha^(2n))/(alpha^(m))`
`=exxunderset(alphato0)lim((e^(cos(alpha^(n))-1)-1)/(cos(alpha^(n))-1))xxunderset(alphato0)lim((cos(alpha^(n))-1)/((alpha^(2n))))xxunderset(alphato0)limalpha^(2n-m)`
`=exx1xxunderset(alphato0)lim(-2"sin"^(2)(alpha^(n))/(2))/(alpha^(2n))xxunderset(alphato0)limalpha^(2n-m)`
`=exx1xx(-(1)/(2))xxunderset(alphato0)limalpha^(2n-m)`
Now, `underset(alphato0)limalpha^(2n-m)` must be equal to 1.
i.e., `2n-m=0`
or `(m)/(n)=2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise JEE Main Previous Year|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let m and n be two positive integers greater than 1. If lim_(alpha rarr0)(e^(cos alpha^(n))-e)/(alpha^(m))=-((e)/(2)) then the value of (m)/(n) is

Let m and n be the two positive integers greater than 1 . If underset( alpha rarr 0 ) ( "lim")((e^(cos(alpha^(n)))-e)/(alpha^(m))) = -((e )/( 2)) then the value of ( m )/( n ) is

lim_(x rarr0)(e^(cos x^(n))-e)/(x^(m))=-(e)/(2) then find (4m)/(5n)

If and n are positive integers,then lim_(x rarr0)((cos x)^((m)/(m))-(cos x)^((pi)/(n)))/(x^(2)) equal to

If m and n are the smallest positive integers satisfying the relation (2*e^(i(pi)/(6)))^(m)=(4*e^(i(pi)/(4)))^(n), then (m+n) has the value equal to

If m and n are positive integers such that m^(n) = 1331 , then what is the value of ( m-1)^(n-1) ?

Find the value of alpha so that lim_(x rarr0)(1)/(x^(2))(e^(alpha x)-e^(x)-x)=(3)/(2)

Determine a positive integer n<=5 such that int_(0)^(1)e^(x)(x-1)^(n)=16-6e