Home
Class 12
MATHS
Evaluate: ("lim")(xvec2)(int0"x"cost^2dt...

Evaluate: `("lim")_(xvec2)(int0"x"cost^2dt)/x`

Text Solution

Verified by Experts

The correct Answer is:
`1`

Given limit is of the form `0/0`.
Then by L'Hopital's rule.
Given limit `lim_(xto 0) (int_(0)^(x)cos t^(2)dt)/x =lim_(xto 0) (cosx^(2))/1=1`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr0)(int_(0)^(x)cos t^(2)dt)/(x)

Evaluate lim_(xto0)(int_(0)^(x^(2))cos^(2)tdt)/(x sin x)

Evaluate: (lim)_(x->0)(int underset0overset(x^2)cost^2tdt)/(xsinx)

Evaluate: (lim)_(xvec 0)(log(5+x)-log(5-x))/(x)

Evaluate the limit: (lim)_(xvec 1)(sin(log x))/(log x)

Evaluate :lim_(x rarr0)(int_(0)^(x^(2))sin sqrt(t)dt)/(x^(3))

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

Thevalueof lim_ (x rarr0) (int_ (0) (cos t ^ (2))) / (x) dt

The value of lim_(x rarr0)(int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is