Home
Class 12
MATHS
Find the points of minima for f(x)=int0^...

Find the points of minima for `f(x)=int_0^x t(t-1)(t-2)dt`

Text Solution

Verified by Experts

The correct Answer is:
`x=0,2`

`f(x)=int_(0)^(x)t(t-1)(t-2)dt`
Let `f'(x)=x(x-1)(x-2)=0`
`:. X=0,1` or 2
At `x=0` and `2,f'(x)` changes sign form -ve to +ve.
Hence `x=0` and 2 are points of minima.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Find the points of maxima of x^(2)f(x)=int_(0)^(x^(2))(t^(2)-t)/(e^(t)+1)dt

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

The number of critical points of the function f(x)=int_(0)^(x)e^(t)(t-1)(t-2)(t-3)dt

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

If f(x)=int_(0)^(x)tf(t)dt+2, then

The interval in which the function f(x)=int_(0)^(x) ((t)/(t+2)-1/t)dt will be non- increasing is

If f(x)=int_0^x (sint)/(t)dt,xgt0, then