Home
Class 12
MATHS
Let f(x) be a continuous and differentia...

Let `f(x)` be a continuous and differentiable function such that `f(x)=int_0^xsin(t^2-t+x)dtdotT h e np rov et h a tf^(x)+f(x)=cosx^2+2xsinx^2`

Text Solution

Verified by Experts

The correct Answer is:
NA

`f(x)=int_(0)^(x)sin(t^(2)-t+x)dt`
`=cosx int_(0)^(x)sin(t^(2)-t)dt+sinx int_(0)^(x)cos(t^(2)-t)dt`.
or `f'(x)=-sin int_(0)^(x)sin(t^(2)-t)dt+cosx sin (x^(2)-x)`
`+cosx int_(0)^(x)cos(t^(2)-t)dt+sinx cos (x^(2)-x)`
`=-sinx int_(0)^(x)sin(t^(2)-t)dt+cosx int_(0)^(x)cos(t^(2)-t)dt+sinx^(2)`
or `f''(x)=-sinx sin(x^(2)-x)-cosx int_(0)^(x)sin(t^(2)-t)dt-sinx`
`int_(0)^(x)cos(t^(2)-t)dt+cosxcos(x^(2)-x)+2xsinx^(2)`
`=cosx^(2)-f(x)+2xsinx^(2)`
or `f''(x)+f(x)=cosx^(2)+2xsinx^(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous and differentiable function such that f(x)=int_(0)^(x)sin(t^(2)-t+x)dt Then prove that f'(x)+f(x)=cos x^(2)+2x sin x^(2)

Let f be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then prove that f(x)=(x^(3))/(3)+x^(2)

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

Let f is a differentiable function such that f'(x)=f(x)+int_(0)^(2)f(x)dx,f(0)=(4-e^(2))/(3) find f(x)

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f is a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx, f(0) = (4-e^(2))/(3) , find f(x).