Home
Class 12
MATHS
Let f(x) be a differentiable function sa...

Let `f(x)` be a differentiable function satisfying `f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt`, then find the value of `f''(0)`.

Text Solution

Verified by Experts

The correct Answer is:
`0`

We have `f(x)=int_(0)^(x)e^(x^(2)-(x-t)^(2))cos(x-t)dt`
`:.f(x)=int_(0)^(x)e^(x^(2)-(x-(x-t))^(2))cos(x-(x-t))dt`
`implies f(x)=int_(0)^(x)e^(x^(2)-t^(2))costdt`
`impliesf(x)=e^(x^(2))int_(0)^(x)e^(-t^(2))cost dt`…………1
Differentiating w.r.t `x` we get
`f'(x)=2xe^(x^(2))int_(0)^(x)e^(-t^(2))cost dt +cosx`
Again differentiating w.r.t `x`, we get
`f''(x)=2(e^(x^(2))+2x^(2)e^(x^(2)))int_(0)^(x)e^(-t^(2))costdt+2xcosx-sinx`
`=2(1+2x^(2))f(x)+2xcosx-sinx`
`:'f''(0)=-2f(0)+0-0=0 ( :' f(0)=0 "from" 1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f:R rarr R be a differentiabe function satisfying f(x)=x^(2)+3int_(0)^(x^(1/3))e^(-t^3)t^(2)*f(x-t^(3))dt Then find f(x) is

If a differentiable function f(x) satisfies f(x)=int_(0)^(x)(f(t)cos t-cos(t-x))dt then value of (1)/(e)(f''((pi)/(2))) is

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval