Home
Class 12
MATHS
Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(...

Let `Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|`,then

A

`1-x^(2)"is a factor of "Delta`

B

`(1-x)^(2) "is a factor of "Delta`

C

`Delta(x)=0 "has 4 real roots"`

D

`Delta'(1)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} \), we will calculate it step by step. ### Step 1: Write down the determinant We start with the determinant as given: \[ \Delta = \begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} \] ### Step 2: Expand the determinant using the first row We can use the first row to expand the determinant: \[ \Delta = 1 \cdot \begin{vmatrix} 1 & x \\ x^2 & 1 \end{vmatrix} - x \cdot \begin{vmatrix} x^2 & x \\ x & 1 \end{vmatrix} + x^2 \cdot \begin{vmatrix} x^2 & 1 \\ x & x^2 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now we will calculate each of the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} 1 & x \\ x^2 & 1 \end{vmatrix} = (1)(1) - (x)(x^2) = 1 - x^3 \] 2. For the second determinant: \[ \begin{vmatrix} x^2 & x \\ x & 1 \end{vmatrix} = (x^2)(1) - (x)(x) = x^2 - x^2 = 0 \] 3. For the third determinant: \[ \begin{vmatrix} x^2 & 1 \\ x & x^2 \end{vmatrix} = (x^2)(x^2) - (1)(x) = x^4 - x \] ### Step 4: Substitute back into the determinant Now substituting back into the expression for \(\Delta\): \[ \Delta = 1 \cdot (1 - x^3) - x \cdot 0 + x^2 \cdot (x^4 - x) \] This simplifies to: \[ \Delta = 1 - x^3 + x^2(x^4 - x) = 1 - x^3 + x^6 - x^3 \] Combining like terms gives: \[ \Delta = x^6 - 2x^3 + 1 \] ### Step 5: Final expression Thus, the final expression for the determinant is: \[ \Delta = x^6 - 2x^3 + 1 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-2|20 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-IV|6 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-II|27 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Let x="cos"(pi)/3+i "sin"(pi)/3 and Delta=|(1,x,x^(2)),(x^(2),1,x),(1,x^(2),1)| the numerical value of Delta is

Let f(x)=|(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x)| then |f(2.9)^(1//3)|= ___________

Suppose a epsilon R and x!=0 . Let Delta (x)=|(1-x,a,a^(2)),(a,a^(2)-x,a^(3)),(a^(2),a^(3),a^(4)-x)| Number of values of x which Delta(x)=0 is

Let Delta(x)=|(x^2-1,x+1,x-2),(2x^2-1,3x,3x-3),(x^2+4,2x-1,2x-1)|. Prove, by using calculus, that Delta(x) is a first degree polynomial.

If Delta (x)=|{:(x,1+x^(2),x^(3)),(log(1+x^(2)),e^(x),sinx),(cosx,tanx,sin^(2)x):}| then

Let Delta(x,y)=|(1,x,y),(1,x+y,y),(1,x,x+y)| Then Delta(-3,2) equals

Let Delta(x)=|(sinx, cosx, sin2x+cos2x),(0,1,1),(1,0,-1)| then Delta'(x) vanishes at least once in

If Delta(x) = |{:(x ,, 1+ x^(2) ,, x^(3)), ("log" (1+ x ^(2)) ,, e^(x) ,, sin x), ( cos x ,, tan x , , sin^(2)x):}| , then-

RESONANCE-MATRICES & DETERMINANT-PART-III
  1. Text Solution

    |

  2. Which one of the following is wrong?

    Text Solution

    |

  3. Which of the following is true for matrox A=[{:(,1,-1),(,2,3):}]

    Text Solution

    |

  4. Suppose a(1),a(2),a(3) are in A.P. and b(1),b(2),b(3) are in H.P. and ...

    Text Solution

    |

  5. Let theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta)...

    Text Solution

    |

  6. If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|,then

    Text Solution

    |

  7. Let a.b ,gt 0 and Delta=|{:(,-x,a,b),(,b,-x,a),(,a,b,-x):}|, then

    Text Solution

    |

  8. The determination Delta=|{:(,b,c,balpha+c),(,c,d,calpha+d),(,balpha+c,...

    Text Solution

    |

  9. The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,a...

    Text Solution

    |

  10. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  11. Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x)...

    Text Solution

    |

  12. Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|,then

    Text Solution

    |

  13. Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}| whe...

    Text Solution

    |

  14. If D is determinant of order three of Delta is a determinant formed by...

    Text Solution

    |

  15. Let A,B,C,D be real matrices such that A^(T)=BCD,B^(T)=CDA,C^(T)=DAB a...

    Text Solution

    |

  16. Let A and B be two 2 xx 2 matrix with real entries, If AB=0 and such t...

    Text Solution

    |

  17. If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Text Solution

    |

  18. IF A and B are squre matrices of order 3, then the true statement is/a...

    Text Solution

    |

  19. Let M be a 3xx3 non-singular matrix with det(M)=4,"If" M^(-1)"adj(adjM...

    Text Solution

    |

  20. Let AX=B where A is 3 xx 3 and X and B are 3 xx 1 matrices then which ...

    Text Solution

    |