Home
Class 12
MATHS
Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n...

Let `f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}|` where `("where"f^(n)(x) "donotes "n^(th)` derivative of f(x).

A

`f^(n)(1)"is indepent of a"`

B

`f^(n)(1)"is indepent of n"`

C

`f^(n)(1)"is indepent a of n"`

D

`y=a(x-f^(n)(1))` represent a straight line through the origin

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze the determinant \( f(x) \) and compute its \( n \)-th derivative. The determinant is given as: \[ f(x) = \begin{vmatrix} \frac{1}{x} & \log x & x^n \\ 1 & -\frac{1}{n} & (-1)^n \\ 1 & a & a^2 \end{vmatrix} \] ### Step 1: Calculate the determinant \( f(x) \) We can compute the determinant using the formula for a \( 3 \times 3 \) matrix: \[ f(x) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows. Substituting the values from our determinant: \[ f(x) = \frac{1}{x} \left( -\frac{1}{n} \cdot a^2 - (-1)^n \cdot a \right) - \log x \left( 1 \cdot a^2 - (-1)^n \cdot 1 \right) + x^n \left( 1 \cdot (-1)^n - 1 \cdot (-\frac{1}{n}) \right) \] ### Step 2: Simplify the determinant Now we simplify each term: 1. The first term: \[ \frac{1}{x} \left( -\frac{a^2}{n} + (-1)^{n+1} a \right) \] 2. The second term: \[ -\log x \left( a^2 + (-1)^n \right) \] 3. The third term: \[ x^n \left( (-1)^n + \frac{1}{n} \right) \] Combining these, we get: \[ f(x) = \frac{(-1)^{n+1} a - \frac{a^2}{n}}{x} - \log x (a^2 + (-1)^n) + x^n \left( (-1)^n + \frac{1}{n} \right) \] ### Step 3: Find the \( n \)-th derivative \( f^{(n)}(x) \) To find \( f^{(n)}(x) \), we differentiate \( f(x) \) \( n \) times. 1. The first term \( \frac{(-1)^{n+1} a - \frac{a^2}{n}}{x} \) will contribute to the \( n \)-th derivative. 2. The second term \( -\log x (a^2 + (-1)^n) \) will also contribute. 3. The third term \( x^n \left( (-1)^n + \frac{1}{n} \right) \) will contribute as well. ### Step 4: Analyze the derivatives After differentiating, we will find that the contributions from the first two terms will vanish due to their structure, leaving us with the contribution from the third term, which is a polynomial in \( x \). ### Final Result After computing the derivatives, we find that: \[ f^{(n)}(x) = 0 \] This indicates that \( f^{(n)}(x) \) is independent of both \( a \) and \( n \). ### Conclusion Thus, we conclude that: - \( f^{(n)}(x) \) is independent of \( a \) and \( n \). - The equation \( y = a(x - f^{(n)}(1)) \) represents a straight line through the origin.
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-2|20 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-IV|6 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-II|27 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If quad f(x)=x^(n),f(1)+(f^(1)(1))/(1)+(f^(2)(1))/(2!)+...(f^(n)(1))/(n!), where f^(r)(x) denotes the rth order derivative of f(x) with respect to x, is n b.2^(n) c.2^(n-1) d.none of these

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f:N rarr N, where f(x)=x+(-1)^(x-1), then the inverse of is.

Let f(x)=x+(1-x)x^(3)+(1-x)(1-x^(2))x^(3)+.........+(1-x)(1-x^(2))......*(1-x^(n-1))x^(n);(n>=4) then :

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

Let f(x)=x+(1-x)x^(2)+(1-x)(1-x^(2))x^(3)+............+(1-x)(1-x^(2)).........(1-x^(n-1))x^(n);(n) then :

Let f(x)=(x)/((1+x^(n))^((1)/(n))) for n>=2 and g(x)=(f(ofo...of)(x) Then int x^(n-2)g(x)dx equals

RESONANCE-MATRICES & DETERMINANT-PART-III
  1. Text Solution

    |

  2. Which one of the following is wrong?

    Text Solution

    |

  3. Which of the following is true for matrox A=[{:(,1,-1),(,2,3):}]

    Text Solution

    |

  4. Suppose a(1),a(2),a(3) are in A.P. and b(1),b(2),b(3) are in H.P. and ...

    Text Solution

    |

  5. Let theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta)...

    Text Solution

    |

  6. If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|,then

    Text Solution

    |

  7. Let a.b ,gt 0 and Delta=|{:(,-x,a,b),(,b,-x,a),(,a,b,-x):}|, then

    Text Solution

    |

  8. The determination Delta=|{:(,b,c,balpha+c),(,c,d,calpha+d),(,balpha+c,...

    Text Solution

    |

  9. The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,a...

    Text Solution

    |

  10. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  11. Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x)...

    Text Solution

    |

  12. Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|,then

    Text Solution

    |

  13. Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}| whe...

    Text Solution

    |

  14. If D is determinant of order three of Delta is a determinant formed by...

    Text Solution

    |

  15. Let A,B,C,D be real matrices such that A^(T)=BCD,B^(T)=CDA,C^(T)=DAB a...

    Text Solution

    |

  16. Let A and B be two 2 xx 2 matrix with real entries, If AB=0 and such t...

    Text Solution

    |

  17. If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Text Solution

    |

  18. IF A and B are squre matrices of order 3, then the true statement is/a...

    Text Solution

    |

  19. Let M be a 3xx3 non-singular matrix with det(M)=4,"If" M^(-1)"adj(adjM...

    Text Solution

    |

  20. Let AX=B where A is 3 xx 3 and X and B are 3 xx 1 matrices then which ...

    Text Solution

    |