Home
Class 12
MATHS
Let A=B B^(T)+C C^(T), where B=[(cos the...

Let `A=B B^(T)+C C^(T)`, where `B=[(cos theta), (sintheta)], C=[(sin theta), (-costheta)], theta in R`. Then A is :

A

`[(0, 0),(0, 0)]`

B

`[(0, 1), (1, 0)]`

C

`[(1, 0), (0,1)]`

D

`[(0,0),(0, 1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the matrix \( A = B B^T + C C^T \) where: \[ B = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \quad C = \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix} \] ### Step 1: Calculate \( B B^T \) First, we compute \( B B^T \): \[ B^T = \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix} \] Now, multiply \( B \) by \( B^T \): \[ B B^T = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix} = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} \] ### Step 2: Calculate \( C C^T \) Next, we compute \( C C^T \): \[ C^T = \begin{pmatrix} \sin \theta & -\cos \theta \end{pmatrix} \] Now, multiply \( C \) by \( C^T \): \[ C C^T = \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix} \begin{pmatrix} \sin \theta & -\cos \theta \end{pmatrix} = \begin{pmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ -\sin \theta \cos \theta & \cos^2 \theta \end{pmatrix} \] ### Step 3: Add \( B B^T \) and \( C C^T \) Now we add the two matrices: \[ A = B B^T + C C^T = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} + \begin{pmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ -\sin \theta \cos \theta & \cos^2 \theta \end{pmatrix} \] Calculating the sum: \[ A = \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ \sin \theta \cos \theta - \sin \theta \cos \theta & \sin^2 \theta + \cos^2 \theta \end{pmatrix} \] ### Step 4: Simplify the Matrix Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Conclusion Thus, the final result is: \[ A = I_2 \] where \( I_2 \) is the \( 2 \times 2 \) identity matrix.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let A=B B^(T)+C C^(T) , where B=[(cos theta),(sin theta)], C=[(sin theta),(-cos theta)], theta in R . Then prove that a is unit matrix.

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

If : cos theta-sintheta=sqrt2.sin theta, "then": costheta+sintheta=

(sin 2 theta)/(sin theta)-(cos 2 theta)/(cos theta)= A) sec theta B) tan theta C)1 D)2

a cos theta+b sin theta+c=0a cos theta+b_(1)sin theta+c_(1)=0

Let theta = (pi)/(5) and A =[{:(cos theta, sin theta),(-sin theta, cos theta):}] . If B = A + A^(4) , then det (B).