Home
Class 12
MATHS
If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then ...

If `A=[(3,-3,4),(2,-3,4),(0,-1,1)]`, then `A^(-1)=`

A

A

B

`A^(2)`

C

`A^(3)`

D

`A^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a \( 3 \times 3 \) matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 3((-3)(1) - (4)(-1)) - (-3)((2)(1) - (4)(0)) + 4((2)(-1) - (-3)(0)) \] Calculating each term: 1. \( 3((-3)(1) - (4)(-1)) = 3(-3 + 4) = 3(1) = 3 \) 2. \( -(-3)((2)(1) - (4)(0)) = 3(2) = 6 \) 3. \( 4((2)(-1) - (-3)(0)) = 4(-2) = -8 \) Now, summing these up: \[ \text{det}(A) = 3 + 6 - 8 = 1 \] ### Step 2: Find the Adjugate of Matrix A The adjugate of a matrix is the transpose of the cofactor matrix. We will find the cofactor for each element of matrix \( A \). 1. **Cofactor of \( a_{11} = 3 \)**: \[ C_{11} = \text{det}\begin{pmatrix} -3 & 4 \\ -1 & 1 \end{pmatrix} = (-3)(1) - (4)(-1) = -3 + 4 = 1 \] 2. **Cofactor of \( a_{12} = -3 \)**: \[ C_{12} = -\text{det}\begin{pmatrix} 2 & 4 \\ 0 & 1 \end{pmatrix} = -((2)(1) - (4)(0)) = -2 \] 3. **Cofactor of \( a_{13} = 4 \)**: \[ C_{13} = \text{det}\begin{pmatrix} 2 & -3 \\ 0 & -1 \end{pmatrix} = (2)(-1) - (-3)(0) = -2 \] 4. **Cofactor of \( a_{21} = 2 \)**: \[ C_{21} = -\text{det}\begin{pmatrix} -3 & 4 \\ -1 & 1 \end{pmatrix} = -((-3)(1) - (4)(-1)) = -(-3 + 4) = -1 \] 5. **Cofactor of \( a_{22} = -3 \)**: \[ C_{22} = \text{det}\begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} = (3)(1) - (4)(0) = 3 \] 6. **Cofactor of \( a_{23} = 4 \)**: \[ C_{23} = -\text{det}\begin{pmatrix} 3 & -3 \\ 0 & -1 \end{pmatrix} = -((3)(-1) - (-3)(0)) = 3 \] 7. **Cofactor of \( a_{31} = 0 \)**: \[ C_{31} = \text{det}\begin{pmatrix} -3 & 4 \\ -3 & 4 \end{pmatrix} = 0 \] 8. **Cofactor of \( a_{32} = -1 \)**: \[ C_{32} = -\text{det}\begin{pmatrix} 3 & 4 \\ 2 & 4 \end{pmatrix} = -((3)(4) - (4)(2)) = 0 \] 9. **Cofactor of \( a_{33} = 1 \)**: \[ C_{33} = \text{det}\begin{pmatrix} 3 & -3 \\ 2 & -3 \end{pmatrix} = (3)(-3) - (-3)(2) = -9 + 6 = -3 \] Now, the cofactor matrix is: \[ C = \begin{pmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & 0 & -3 \end{pmatrix} \] Taking the transpose gives us the adjugate: \[ \text{adj}(A) = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 3 & 0 \\ -2 & 3 & -3 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = \text{adj}(A) = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 3 & 0 \\ -2 & 3 & -3 \end{pmatrix} \] ### Final Answer Thus, the inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 3 & 0 \\ -2 & 3 & -3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then show that A^(3)=A^(-1) .

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.

If A= [[3,-3,4],[2,-3,4],[0,-1,1]] then find A^(3)

Find the inverse of each of the matrices given below : A=[(3,-3,4),(2,-3,4),(0,-1,1)]

The adjoint matrix of [(3,-3,4),(2,-3,4),(0,-1,1)] is

If A = [(0,4,3),(1,-3,-3),(-1,4,4)] , then find A^(2) and hence find A^(-1)

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]