Home
Class 12
MATHS
Let M = [a(ij)](3xx3) where a(ij) in {-1...

Let `M = [a_(ij)]_(3xx3)` where `a_(ij) in {-1,1}`. Find the maximum possible value of det(M). (A) 3 (B) 4 (C) 5 (D) 6

A

3

B

4

C

5

D

6

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

If A=[a_(ij)]_(2xx3) , difined as a_(ij)=i^(2)-j+1 , then find matrix A.

Suppose A=a_(ij)_(3xx3), where a_(ij) epsilonR if det (adjA)=25, then |det (A)| equals

Suppose A=(a_(ij))_(3xx3) where a_(ij) epsilon R If det (adj(A)A^(-1))=3 , then det (adj(A)) equals:

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=