Home
Class 12
MATHS
Let matrix A=[(x,3,2),(1,y,4),(2, 2,z)]...

Let matrix `A=[(x,3,2),(1,y,4),(2, 2,z)], " if " xyz=2lambda and 8x+4y+3x=lambda+28`, then (adj A) A equals :

A

`[(lambda+1,0,0),(0,lambda+1,0),(0,0,lambda+1)]`

B

`[(lambda,0,0),(0,lambda,0),(0,0,lambda)]`

C

`[(lambda^(2),0,0),(0,lambda^(2),0),(0,0,lambda^(2))]`

D

`[(lambda+2,0,0),(0,lambda+2,0),(0,0,lambda+2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( \text{adj}(A) A \) for the given matrix \( A \) and the conditions provided. ### Step 1: Define the Matrix A The matrix \( A \) is given as: \[ A = \begin{pmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{pmatrix} \] ### Step 2: Calculate the Determinant of A To find \( \text{adj}(A) A \), we first need to find the determinant of \( A \) (denoted as \( \det(A) \)). We can calculate the determinant using the formula for a 3x3 matrix: \[ \det(A) = x \begin{vmatrix} y & 4 \\ 2 & z \end{vmatrix} - 3 \begin{vmatrix} 1 & 4 \\ 2 & z \end{vmatrix} + 2 \begin{vmatrix} 1 & y \\ 2 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} y & 4 \\ 2 & z \end{vmatrix} = yz - 8 \) 2. \( \begin{vmatrix} 1 & 4 \\ 2 & z \end{vmatrix} = z - 8 \) 3. \( \begin{vmatrix} 1 & y \\ 2 & 2 \end{vmatrix} = 2 - 2y \) Substituting these back into the determinant formula: \[ \det(A) = x(yz - 8) - 3(z - 8) + 2(2 - 2y) \] \[ = xyz - 8x - 3z + 24 + 4 - 4y \] \[ = xyz - 8x - 3z + 28 - 4y \] ### Step 3: Use the Given Conditions We have two conditions: 1. \( xyz = 2\lambda \) 2. \( 8x + 4y + 3x = \lambda + 28 \) From the second condition, we simplify: \[ 11x + 4y = \lambda + 28 \] Thus, we can express \( \lambda \) as: \[ \lambda = 11x + 4y - 28 \] ### Step 4: Substitute into the Determinant Now substituting \( xyz = 2\lambda \) into the determinant: \[ \det(A) = 2\lambda - 8x - 3z + 28 - 4y \] Substituting \( \lambda \): \[ = 2(11x + 4y - 28) - 8x - 3z + 28 - 4y \] \[ = 22x + 8y - 56 - 8x - 3z + 28 - 4y \] \[ = (22x - 8x) + (8y - 4y) - 3z - 56 + 28 \] \[ = 14x + 4y - 3z - 28 \] ### Step 5: Find adjoint(A) A Using the property: \[ \text{adj}(A) A = \det(A) I \] where \( I \) is the identity matrix. Thus: \[ \text{adj}(A) A = \det(A) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Substituting \( \det(A) \): \[ \text{adj}(A) A = (14x + 4y - 3z - 28) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] \[ = \begin{pmatrix} 14x + 4y - 3z - 28 & 0 & 0 \\ 0 & 14x + 4y - 3z - 28 & 0 \\ 0 & 0 & 14x + 4y - 3z - 28 \end{pmatrix} \] ### Final Result Thus, the final result for \( \text{adj}(A) A \) is: \[ \text{adj}(A) A = \begin{pmatrix} 14x + 4y - 3z - 28 & 0 & 0 \\ 0 & 14x + 4y - 3z - 28 & 0 \\ 0 & 0 & 14x + 4y - 3z - 28 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

[" 2.Let matrix "A=[[1,y,4],[2,2,z]]" ; if "xyz=2 lambda" and "8x+4y+3z=lambda+28," then "(adj A)" A equals: "],[[" (A) "[[lambda+1,0,0],[0,lambda+1,0],[0,0,lambda+1]]," (B) "[[lambda,0,0],[0,lambda,0],[0,0,lambda]]],[" (C) "[[lambda^(2),0,0],[0,lambda^(2),0],[0,0,lambda^(2)]]," (D) "[[lambda+2,0,0],[0,lambda+2,0],[0,0,lambda+2]]]]

Given that matrix A[(x,3,2),(1,y,4),(2,2,z)] . If xyz=60 and 8x+4y+3z=20 , then A(adj A) is equal to

Given the matrix A = [[x,3,2],[1,y,4],[2,2,z]]cdot If xyz = 60 and 8x + 4y + 3z = 20, then A(adjA) is equal to

[" Let "A" be a square matrix "],[" where "],[A=[[x,3,2],[1,y,4],[2,2,z]]" ,"xyz=60,8x+4y+3z=:],[" ,then "^(A)(adjA)" is equal to "]

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] where x,y, z in N . If det. (adj. (adj. A)) =2^(8)*3^(4) then the number of such matrices A is : [Note : adj. A denotes adjoint of square matrix A.]

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

If (x+y)^(2)=2(x^(2)+y^(2)) and (xy+lambda)^(2)=4,lambda>0, then lambda is equal to