Home
Class 12
MATHS
if A=[a(ij)](2*2) where a(ij)={i+j , i!=...

if `A=[a_(ij)]_(2*2)` where `a_(ij)={i+j , i!=j` and `a_(ij)=i^2-2j ,i=j` then `A^-1` is equal to

A

`(1)/(9)[(0, 3),(3,1)]`

B

`(1)/(9)[(0,-3),(3,-1)]`

C

`(1)/(9)[(0,-3),(-3,-1)]`

D

`(1)/(3)[(0,3),(3,1)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

If matrix A=([a_(ij)])_(2xx2), where a_(ij)={1,quad if quad i!=j0,quad if i+j, then A^(2) is equal to I( b) A(c)O(d)I

If matrix A=[a_(ij)]_(2xx2^(,)) where a_(ij)=1" if "i!=j =0" if "i=j then A^(2) is equal to :

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If A = [a_(ij)]_(2xx2) , where a_(ij) = ((i + 2j)^(2))/(2 ) , then A is equal to

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.