Home
Class 12
MATHS
Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)]...

Let matrix `A=[(x,y,-z),(1,2,3),(1,1,2)]` where `x,y, z in N`. If det. (adj. (adj. A))`=2^(8)*3^(4)` then the number of such matrices A is :
[Note : adj. A denotes adjoint of square matrix A.]

A

220

B

45

C

55

D

110

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of matrices \( A \) of the form \[ A = \begin{pmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix} \] where \( x, y, z \) are natural numbers, and we have the condition that \[ \text{det}(\text{adj}(\text{adj}(A))) = 2^8 \cdot 3^4. \] ### Step 1: Understanding the determinant of the adjoint The formula for the determinant of the adjoint of a matrix \( A \) is given by: \[ \text{det}(\text{adj}(A)) = (\text{det}(A))^{n-1} \] where \( n \) is the order of the matrix. For a \( 3 \times 3 \) matrix, \( n = 3 \), so we have: \[ \text{det}(\text{adj}(A)) = (\text{det}(A))^{2}. \] ### Step 2: Finding the determinant of the adjoint of the adjoint Now, applying the formula again for the adjoint of the adjoint: \[ \text{det}(\text{adj}(\text{adj}(A))) = (\text{det}(\text{adj}(A)))^{2} = ((\text{det}(A))^{2})^{2} = (\text{det}(A))^{4}. \] ### Step 3: Setting up the equation From the problem, we know that: \[ \text{det}(\text{adj}(\text{adj}(A))) = 2^8 \cdot 3^4. \] Thus, we can set up the equation: \[ (\text{det}(A))^{4} = 2^8 \cdot 3^4. \] Taking the fourth root of both sides gives us: \[ \text{det}(A) = 2^{8/4} \cdot 3^{4/4} = 2^2 \cdot 3^1 = 4 \cdot 3 = 12. \] ### Step 4: Calculating the determinant of matrix A Next, we need to calculate the determinant of matrix \( A \): \[ \text{det}(A) = \begin{vmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix}. \] Using the determinant formula for a \( 3 \times 3 \) matrix, we expand: \[ \text{det}(A) = x \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - y \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - z \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix}. \] Calculating the minors: 1. \( \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2 - 3 \cdot 1) = 4 - 3 = 1 \) 2. \( \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} = (1 \cdot 2 - 3 \cdot 1) = 2 - 3 = -1 \) 3. \( \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = (1 \cdot 1 - 2 \cdot 1) = 1 - 2 = -1 \) So, substituting back, we have: \[ \text{det}(A) = x(1) - y(-1) - z(-1) = x + y + z. \] ### Step 5: Setting the determinant equal to 12 Now we set up the equation: \[ x + y + z = 12. \] ### Step 6: Finding the number of solutions We need to find the number of natural number solutions to the equation \( x + y + z = 12 \). This can be transformed into a combinatorial problem by letting \( x' = x - 1 \), \( y' = y - 1 \), \( z' = z - 1 \) (since \( x, y, z \) are natural numbers, \( x', y', z' \) are non-negative integers): \[ x' + 1 + y' + 1 + z' + 1 = 12 \implies x' + y' + z' = 9. \] The number of non-negative integer solutions to this equation is given by the stars and bars theorem: \[ \text{Number of solutions} = \binom{n+k-1}{k-1} = \binom{9 + 3 - 1}{3 - 1} = \binom{11}{2}. \] Calculating this: \[ \binom{11}{2} = \frac{11 \times 10}{2} = 55. \] ### Final Answer Thus, the number of such matrices \( A \) is \( \boxed{55} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let matrix A=[[x,y,-z1,2,31,1,2]] where x,y,z varepsilon N. If det.,(adj(adj.A))=2^(8)*(3^(4)) then the number of such matrices A is :

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

A, B and C are three square matrices of order 3 such that A= diag. (x, y, x), det. (B)=4 and det. (C)=2 , where x, y, z in I^(+) . If det. (adj. (adj. (ABC))) =2^(16)xx3^(8)xx7^(4) , then the number of distinct possible matrices A is ________ .

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

If A, B, C are three square matrices of third order such that A=[[x,0,2],[0,y,0],[0,0,z]], det(B)=2^2. 3^2,det(C)=2 where x, y, z in I^+ and det(adj(adj(ABC))) =2^16xx3^8xx7^4 , then find the number of distinct possible matrices A.