Home
Class 12
MATHS
Let A=[(3,-5),(7,-12)] and B=[(12,-5),(7...

Let `A=[(3,-5),(7,-12)] and B=[(12,-5),(7,-3)]` bc two given matrices, then `(AB)^(-1)` is :

A

`[(1,0),(0,-1)]`

B

`[(1,0),(0,1)]`

C

`[(-1,0),(0,1)]`

D

`[(0,1),(1,0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \((AB)^{-1}\) where \(A = \begin{pmatrix} 3 & -5 \\ 7 & -12 \end{pmatrix}\) and \(B = \begin{pmatrix} 12 & -5 \\ 7 & -3 \end{pmatrix}\), we will follow these steps: ### Step 1: Calculate the product \(AB\) To find the product of two matrices \(A\) and \(B\), we use the formula for matrix multiplication. The element at position \((i, j)\) in the resulting matrix is calculated by taking the dot product of the \(i^{th}\) row of the first matrix and the \(j^{th}\) column of the second matrix. \[ AB = \begin{pmatrix} 3 & -5 \\ 7 & -12 \end{pmatrix} \begin{pmatrix} 12 & -5 \\ 7 & -3 \end{pmatrix} \] Calculating the elements of the product: 1. First row, first column: \[ 3 \cdot 12 + (-5) \cdot 7 = 36 - 35 = 1 \] 2. First row, second column: \[ 3 \cdot (-5) + (-5) \cdot (-3) = -15 + 15 = 0 \] 3. Second row, first column: \[ 7 \cdot 12 + (-12) \cdot 7 = 84 - 84 = 0 \] 4. Second row, second column: \[ 7 \cdot (-5) + (-12) \cdot (-3) = -35 + 36 = 1 \] Thus, the product \(AB\) is: \[ AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Find \((AB)^{-1}\) The inverse of a matrix is defined such that: \[ A \cdot A^{-1} = I \] where \(I\) is the identity matrix. Since we have already calculated \(AB\) and found that: \[ AB = I \] it follows that: \[ (AB)^{-1} = I \] Thus, \[ (AB)^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Conclusion The answer is: \[ (AB)^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Options Looking at the options provided, we find that this corresponds to: - Option B: \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If A+B^T=[(1,3),(4,5)] and A^T-B=[(7,8),(-1,3)] , then find matrices A and B.

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.

Find the inverse of each of the matrices given below : If A=[(3,2),(7,5)] and B=[(6,7),(8,9)], " verify that " (AB)^(-1)= B^(-1) A^(-1) .

Let A=[(2,3),(5,7)] and B=[(a, 0), (0, b)] where a, b in N . The number of matrices B such that AB=BA , is equal to

If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}] , then varify that (i) (A-B)'=A'-B'

If A={:[(1,2),(3,4)]:}andB={:[(5,6),(7,8)]:} , then find 3A+7B.

2) If A=[(1,2),(5,7)],B=[(2,1),(3,4)] , find AB.

Let A={1,3, 5,7, 9)} and B = {2,3,5, 7, 11, 13} . Find A cap B .

If A={:[(2,3,5,6),(-1,2,-3,4)]:}andB={:[(4,-5,3,7),(8,-3,-1,2)]:} , then find A^(T)+B^(T)and(A+B)^(T) . What do you notice ?

(5)/(7)+(-12)/(5)=-(12)/(5)+(5)/(7)