Home
Class 12
MATHS
If A=((1,2),(0,1)),P=((costheta, sinthet...

If `A=((1,2),(0,1)),P=((costheta, sintheta),(-sintheta, costheta)),Q=P^(T)AP`, find `PQ^(2014)P^(T)`:

A

`((1,2^(2014)),(0,1))`

B

`((1,4028),(0,1))`

C

`(P^(T))^(2013)A^(2014)P^(2013)`

D

`P^(T)A^(2014)P`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to compute \( PQ^{2014}P^T \) where \( Q = P^T A P \). ### Step 1: Define the Matrices Given: - \( A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \) - \( P = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \) ### Step 2: Calculate \( P^T \) The transpose of matrix \( P \) is: \[ P^T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] ### Step 3: Compute \( Q = P^T A P \) Now we compute \( Q \): \[ Q = P^T A P \] First, calculate \( A P \): \[ A P = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 1 \cdot \cos \theta + 2 \cdot (-\sin \theta) & 1 \cdot \sin \theta + 2 \cdot \cos \theta \\ 0 \cdot \cos \theta + 1 \cdot (-\sin \theta) & 0 \cdot \sin \theta + 1 \cdot \cos \theta \end{pmatrix} \] This simplifies to: \[ A P = \begin{pmatrix} \cos \theta - 2 \sin \theta & \sin \theta + 2 \cos \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] Now compute \( P^T (A P) \): \[ Q = P^T \begin{pmatrix} \cos \theta - 2 \sin \theta & \sin \theta + 2 \cos \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] Calculating this gives: \[ Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta - 2 \sin \theta & \sin \theta + 2 \cos \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] After performing the multiplication, we find: \[ Q = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = A \] ### Step 4: Compute \( PQ^{2014}P^T \) Since \( Q = A \), we can write: \[ PQ^{2014}P^T = PA^{2014}P^T \] ### Step 5: Calculate \( A^{2014} \) To find \( A^{2014} \), we observe the pattern: - \( A^1 = A \) - \( A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \) - \( A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix} \) From this pattern, we can deduce: \[ A^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix} \] Thus, \[ A^{2014} = \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix} \] ### Step 6: Substitute Back Now substituting back into our expression: \[ PQ^{2014}P^T = PA^{2014}P^T = P \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix} P^T \] ### Step 7: Final Calculation Calculating \( PA^{2014}P^T \): \[ PA^{2014} = P \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix} \] This results in: \[ \begin{pmatrix} \cos \theta & 4028 \cos \theta + \sin \theta \\ -\sin \theta & 4028 \sin \theta + \cos \theta \end{pmatrix} \] Now multiply by \( P^T \): \[ = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix} \] ### Final Result After performing the multiplication, we find: \[ PQ^{2014}P^T = \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If A=([1,20,1])P=([cos theta,sin theta-sin theta,cos theta]),Q=P^(T)AP find PQ^(2014)P^(T)

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

Evaluate costheta.costheta+sintheta.sintheta

((1+sintheta+i costheta)/(1+sintheta-i costheta))^n is equal to

If {:A=[(costheta,sintheta),(-sintheta,costheta)]:}, " then "lim_(ntooo) 1/nA^n is