Home
Class 12
MATHS
Let A(alpha)=[(cosalpha, -sinalpha,0),(s...

Let `A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)]`, then :

A

`A_(alpha+beta)=A_(alpha)A_(beta)`

B

`A_(alpha)^(-1)=A_(-alpha)`

C

`A_(alpha)^(-1)=-A_(alpha)`

D

`A_(alpha)^(2)=-I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrix \( A_\alpha \) given by: \[ A_\alpha = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] We will explore the properties of this matrix, specifically focusing on the statements provided in the options. ### Step 1: Verify \( A_{\alpha + \beta} = A_\alpha \cdot A_\beta \) To verify this, we need to compute \( A_{\alpha + \beta} \) and \( A_\alpha \cdot A_\beta \). **1.1 Compute \( A_{\alpha + \beta} \)** \[ A_{\alpha + \beta} = \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & 0 \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Using the angle addition formulas: - \( \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \) - \( \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \) Thus, we can write: \[ A_{\alpha + \beta} = \begin{pmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -(\sin \alpha \cos \beta + \cos \alpha \sin \beta) & 0 \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & \cos \alpha \cos \beta - \sin \alpha \sin \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] **1.2 Compute \( A_\alpha \cdot A_\beta \)** Now, we compute \( A_\alpha \cdot A_\beta \): \[ A_\beta = \begin{pmatrix} \cos \beta & -\sin \beta & 0 \\ \sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Now, multiplying \( A_\alpha \) and \( A_\beta \): \[ A_\alpha \cdot A_\beta = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & -\sin \beta & 0 \\ \sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -(\sin \alpha \cos \beta + \cos \alpha \sin \beta) & 0 \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & \cos \alpha \cos \beta - \sin \alpha \sin \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] **Conclusion for Step 1:** Since \( A_{\alpha + \beta} = A_\alpha \cdot A_\beta \), the first statement is correct. ### Step 2: Verify \( A_\alpha^{-1} = A_{-\alpha} \) **2.1 Compute \( A_\alpha^{-1} \)** To find the inverse, we can use the property that for a rotation matrix, the inverse is the transpose: \[ A_\alpha^{-1} = A_{-\alpha} = \begin{pmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0 \\ \sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Using the fact that \( \cos(-\alpha) = \cos \alpha \) and \( \sin(-\alpha) = -\sin \alpha \): \[ A_{-\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] **Conclusion for Step 2:** Thus, \( A_\alpha^{-1} = A_{-\alpha} \) is also correct. ### Final Conclusion Both statements are correct: 1. \( A_{\alpha + \beta} = A_\alpha \cdot A_\beta \) 2. \( A_\alpha^{-1} = A_{-\alpha} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

Let F(alpha)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}] and G(beta)=[{:(cosbeta,0,sinbeta),(0,1,0),(-sinbeta,0,cosbeta):}] . Show that [F(alpha).G(beta)]^(-1)=G(-beta).F(-alpha) .

If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1 is equal to (A) F(-alpha)G(-beta) (B) G(-beta)F(-alpha0 (C) F(alpha^-1)G(beta^-1) (D) G(beta^-1)F(alpha^-1)

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

Statement 1: If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n [F(alpha)]^(-1)=F(-alpha)dot Statement 2: For matrix G(beta)=[[cosbeta,0,sinbeta],[0, 1, 0],[-sinbeta,0,cosbeta]]dot we have [G(beta)]^(-1)=G(-beta)dot

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is