Home
Class 12
MATHS
A^(3)-2A^(2)-A+2I=0 if A=...

`A^(3)-2A^(2)-A+2I=0` if `A=`

A

I

B

2I

C

`[(2,-1,2),(-1,0,0),(0,1,0)]`

D

`[(2,1,-2),(1,0,0),(0,1,0)]`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If A is a square matrix of order 3 and I is an ldentity matrix of order 3 such that A^(3) - 2A^(2) - A + 2l =0, then A is equal to

Let A be a square matrix of order 3 satisfies A^(3)-6A^(2)+7A-8I=0 & B=A-2I If |A|=8 & |"adj"(I-2A^(-1))|=K, then [K] ………where [.] represents G.I.F

If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0, then A^(-1) is equal to

If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0 , then its inverse is

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals

If A^(2)-3A+2I=0 , then A =

If A^(2)-3A+2I=0 then

For the matrix A=[(1,1,0),(1,2,1),(2,1,0)] which of the following is correct? (A) A^3+3A^2-I=0 (B) A^3-3A^2-I=0 (C) A^3+2A^2-I=0 (D) A^3-+A^2-+I=0

If A^(2) - 3 A + 2I = 0, then A is equal to