Home
Class 12
MATHS
Find the maximum value of the determinan...

Find the maximum value of the determinant of an arbitrary `3xx3` matrix A, each of whose entries `a_(ij) in {-1,1}`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the determinant of a `3x3` matrix \( A \) where each entry \( a_{ij} \) can take values from \{-1, 1\}, we can follow these steps: ### Step 1: Define the Matrix Let the matrix \( A \) be represented as: \[ A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \] where \( a_{ij} \in \{-1, 1\} \). ### Step 2: Calculate the Determinant The determinant of a `3x3` matrix is calculated using the formula: \[ \text{det}(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] ### Step 3: Substitute Values To find the maximum value, we can try different combinations of \( a_{ij} \) values. We will consider the cases where the entries are either 1 or -1. ### Step 4: Test Different Combinations Let's try the following combinations of the matrix entries: 1. \( A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \) \[ \text{det}(A) = 0 \] 2. \( A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \) \[ \text{det}(A) = 1(1 \cdot 1 - (-1)(-1)) - 1(1 \cdot 1 - (-1)(1)) + 1(1 \cdot (-1) - (-1)(1)) = 1(1 - 1) - 1(1 + 1) + 1(-1 + 1) = 0 - 2 + 0 = -2 \] 3. \( A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix} \) \[ \text{det}(A) = 1((-1)(-1) - (1)(1)) - 1((-1)(-1) - (1)(-1)) + 1((-1)(1) - (-1)(-1)) = 1(1 - 1) - 1(1 + 1) + 1(-1 - 1) = 0 - 2 - 2 = -4 \] 4. \( A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \) \[ \text{det}(A) = 1((-1)(1) - (1)(1)) - 1(1(1) - (-1)(-1)) + (-1)(1(1) - (1)(-1)) = 1(-1 - 1) - 1(1 - 1) - 1(1 + 1) = -2 - 0 - 2 = -4 \] 5. \( A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \) \[ \text{det}(A) = 1((-1)(1) - (-1)(-1)) - 1(1(1) - (-1)(-1)) + 1(1(-1) - (-1)(1)) = 1(-1 - 1) - 1(1 - 1) + 1(-1 + 1) = -2 - 0 + 0 = -2 \] After testing various combinations, we find that the maximum determinant occurs with the following matrix: \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \] Calculating the determinant gives: \[ \text{det}(A) = 4 \] ### Conclusion The maximum value of the determinant of a `3x3` matrix \( A \) with entries from \{-1, 1\} is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Construct 3xx3 matrix whose elements are given by : a_(ij)=i-j

Construct 3xx3 matrix whose elements are given by : a_(ij) =i+j

Construct 3xx3 matrix whose elements are given by : a_(ij)=2i-3j

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i/j

Construct 3xx3 matrix whose elements are given by : a_(ij)=ixxj

Construct a 4xx3 matrix whose elements are a_(ij)=(i)/(j).

Construct a3xx2 matrix whose elements are given by a_(ij)=(i+2j).

Construct a 2xx3 matrix A = [a_ij], whose elements are given by a_(ij) ={{:(2i)/(3j):}}