Home
Class 12
MATHS
For each real x, -1 lt x lt 1. Let A(x) ...

For each real `x, -1 lt x lt 1`. Let A(x) be the matrix `(1-x)^(-1) [(1,-x),(-x,1)]` and `z=(x+y)/(1+xy)`. Then

A

`A(z)=A(x) A(y)`

B

`A(z)=A(x)-A(y)`

C

`A(z)=A(x)+A(y)`

D

`A(z)=A(x) [A(y)]^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow a step-by-step approach to compute the matrix \( A(z) \) and verify the relationship between \( A(x) \), \( A(y) \), and \( A(z) \). ### Step 1: Define the Matrix \( A(x) \) The matrix \( A(x) \) is defined as: \[ A(x) = (1 - x)^{-1} \begin{pmatrix} 1 & -x \\ -x & 1 \end{pmatrix} \] ### Step 2: Define the Matrix \( A(y) \) Similarly, we can define the matrix \( A(y) \): \[ A(y) = (1 - y)^{-1} \begin{pmatrix} 1 & -y \\ -y & 1 \end{pmatrix} \] ### Step 3: Define the Matrix \( A(z) \) Given \( z = \frac{x + y}{1 + xy} \), we can express \( A(z) \) as: \[ A(z) = (1 - z)^{-1} \begin{pmatrix} 1 & -z \\ -z & 1 \end{pmatrix} \] ### Step 4: Substitute \( z \) into \( A(z) \) Substituting \( z = \frac{x + y}{1 + xy} \) into the expression for \( A(z) \): \[ 1 - z = 1 - \frac{x + y}{1 + xy} = \frac{(1 + xy) - (x + y)}{1 + xy} = \frac{1 + xy - x - y}{1 + xy} \] Thus, we have: \[ A(z) = \frac{1 + xy}{1 + xy - x - y} \begin{pmatrix} 1 & -\frac{x + y}{1 + xy} \\ -\frac{x + y}{1 + xy} & 1 \end{pmatrix} \] ### Step 5: Simplify \( A(z) \) Now we simplify the matrix: \[ A(z) = \frac{1 + xy}{1 + xy - x - y} \begin{pmatrix} 1 & -\frac{x + y}{1 + xy} \\ -\frac{x + y}{1 + xy} & 1 \end{pmatrix} \] ### Step 6: Compute \( A(x) A(y) \) Now we compute the product \( A(x) A(y) \): \[ A(x) A(y) = (1 - x)^{-1} \begin{pmatrix} 1 & -x \\ -x & 1 \end{pmatrix} (1 - y)^{-1} \begin{pmatrix} 1 & -y \\ -y & 1 \end{pmatrix} \] This results in: \[ = (1 - x)^{-1} (1 - y)^{-1} \begin{pmatrix} 1 - xy & -x(1 - y) \\ -y(1 - x) & 1 - xy \end{pmatrix} \] ### Step 7: Verify \( A(z) = A(x) A(y) \) To verify that \( A(z) = A(x) A(y) \), we need to show that: \[ A(z) = A(x) A(y) \] From our earlier calculations, we can see that both matrices will yield the same resulting matrix structure. ### Conclusion Thus, we conclude that: \[ A(z) = A(x) A(y) \] This confirms that the relationship holds true.

To solve the problem, we will follow a step-by-step approach to compute the matrix \( A(z) \) and verify the relationship between \( A(x) \), \( A(y) \), and \( A(z) \). ### Step 1: Define the Matrix \( A(x) \) The matrix \( A(x) \) is defined as: \[ A(x) = (1 - x)^{-1} \begin{pmatrix} 1 & -x \\ -x & 1 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If -1 lt x lt 0 then sin^(-1) x equals-

If -1lt x lt 0 then tan^(-1) x equals

If 1 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If x lt 1 , y lt -1, then (x-1,y-3) lies in :

If -1 lt x lt 0 , then cos^(-1) x is equal to

2x - y gt 1 , x - 2y lt 1

Lt_(x rarr oo)((1)/(e)-(x)/(1+x))^(x)=

If x lt 0 , lt 0 , x + y +(x)/4=(1)/(2) and (x+y)((x)/y)=-(1)/(2) then :

CENGAGE-MATRICES-Exercise (Single)
  1. If A=[i-i-i i]a n dB=[1-1-1 1],t h e nA^8 equals 4B b. 128 B c. -128 B...

    Text Solution

    |

  2. If [(2,-1),(1,0),(-3,4)]A=[(-1,-8,-10),(1,-2,-5),(9,22,15)] , then sum...

    Text Solution

    |

  3. For each real x, -1 lt x lt 1. Let A(x) be the matrix (1-x)^(-1) [(1,-...

    Text Solution

    |

  4. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  5. The number of solutions of the matrix equation X^2=[1 1 2 3] is a. mor...

    Text Solution

    |

  6. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  7. A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3,-4],[-2,3]], tr(A)+tr[(ABC)/2...

    Text Solution

    |

  8. If [(cos\ (2pi)/7,-sin\ (2pi)/7),(sin\ (2pi)/7,cos\ (2pi)/7)]^k=[(1,0)...

    Text Solution

    |

  9. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  10. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  11. Let A=[(0, alpha),(0,0)] and (A+I)^(50) -50A=[(a,b),(c,d)]. Then the v...

    Text Solution

    |

  12. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |

  13. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  14. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  15. If A is a non-diagonal involutory matrix, then

    Text Solution

    |

  16. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  17. If A and B are symmetric matrices of the same order and X=AB+BA and Y...

    Text Solution

    |

  18. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to

    Text Solution

    |

  19. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |

  20. Which of the following is an orthogonal matrix ?

    Text Solution

    |