Home
Class 12
MATHS
Let A=[(0, alpha),(0,0)] and (A+I)^(50) ...

Let `A=[(0, alpha),(0,0)]` and `(A+I)^(50) -50A=[(a,b),(c,d)]`. Then the value of `a+b+c+d` is

A

2

B

1

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((A + I)^{50} - 50A\) where \(A = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}\) and \(I\) is the identity matrix. We will then find the values of \(a\), \(b\), \(c\), and \(d\) from the resulting matrix and compute \(a + b + c + d\). ### Step-by-Step Solution: 1. **Define the matrices**: \[ A = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 2. **Calculate \(A + I\)**: \[ A + I = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \] 3. **Compute \((A + I)^{50}\)**: To compute \((A + I)^{50}\), we can use the property of upper triangular matrices. The matrix \(\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}\) raised to any power \(n\) is given by: \[ \begin{pmatrix} 1 & n\alpha \\ 0 & 1 \end{pmatrix} \] Therefore, \[ (A + I)^{50} = \begin{pmatrix} 1 & 50\alpha \\ 0 & 1 \end{pmatrix} \] 4. **Calculate \(50A\)**: \[ 50A = 50 \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 50\alpha \\ 0 & 0 \end{pmatrix} \] 5. **Evaluate \((A + I)^{50} - 50A\)**: \[ (A + I)^{50} - 50A = \begin{pmatrix} 1 & 50\alpha \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 50\alpha \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 6. **Identify the values of \(a\), \(b\), \(c\), and \(d\)**: From the resulting matrix: \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] We have: - \(a = 1\) - \(b = 0\) - \(c = 0\) - \(d = 1\) 7. **Calculate \(a + b + c + d\)**: \[ a + b + c + d = 1 + 0 + 0 + 1 = 2 \] ### Final Answer: The value of \(a + b + c + d\) is \(2\).

To solve the problem, we need to evaluate the expression \((A + I)^{50} - 50A\) where \(A = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}\) and \(I\) is the identity matrix. We will then find the values of \(a\), \(b\), \(c\), and \(d\) from the resulting matrix and compute \(a + b + c + d\). ### Step-by-Step Solution: 1. **Define the matrices**: \[ A = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[(0,alpha),(0,0)] and (A+1)^(50)=50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these

Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50A=[(a,b),(c,d)] , find abc+abd+bcd+acd

Let A = [[0, alpha],[0,0]] and(A+I)^(70) - 70 A = [[a-1,b-1],[c-1,d-1]], the value of a + b + c + d is

Let A = [(1,0),(2,3)] and A^(n) = [(a, b),(c,d)] then lim_(n to oo) (b + c)/(a + d) =

Let A=[(a,b),(c, d)]and B=[(alpha), (beta)] ne [(0), (0)] such that AB = B and a+d=2021 , then the value of ad-bc is equal to ___________ .

Let A=[[a,bc,d]] and B=([p,q])!=[[0,0]] Given that AB,=B and a+d=2. Then the value of (ad-bc) is

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (=6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

Let A=[(5,0),(-1,0)] and B=[(0,1),(-1,0)] If 4A+5B-C=0 then C is

Let A=[(5,0),(-1,0)] and B=[(0,1),(-1,0)] If 4A+5B-C=0 then C is

CENGAGE-MATRICES-Exercise (Single)
  1. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  2. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  3. Let A=[(0, alpha),(0,0)] and (A+I)^(50) -50A=[(a,b),(c,d)]. Then the v...

    Text Solution

    |

  4. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |

  5. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  6. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  7. If A is a non-diagonal involutory matrix, then

    Text Solution

    |

  8. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  9. If A and B are symmetric matrices of the same order and X=AB+BA and Y...

    Text Solution

    |

  10. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to

    Text Solution

    |

  11. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |

  12. Which of the following is an orthogonal matrix ?

    Text Solution

    |

  13. Let A and B be two square matrices of the same size such that AB^(T)+B...

    Text Solution

    |

  14. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  15. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  16. If A=[(a,b,c),(x,y,x),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If...

    Text Solution

    |

  17. If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),...

    Text Solution

    |

  18. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  19. Id [1//25 0x1//25]=[5 0-a5]^(-2) , then the value of x is a//125 b. 2a...

    Text Solution

    |

  20. If A=[(1,2),(2,1)] and f(x)=(1+x)/(1-x), then f(A) is

    Text Solution

    |