Home
Class 12
MATHS
If A(alpha, beta)=[("cos" alpha,sin alph...

If `A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))]`, then `A(alpha, beta)^(-1)` is equal to

A

`A(-alpha, -beta)`

B

`A(-alpha, beta)`

C

`A(alpha, -beta)`

D

`A(alpha, beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A(\alpha, \beta) \), we will follow these steps: ### Step 1: Write down the matrix \( A(\alpha, \beta) \) The given matrix is: \[ A(\alpha, \beta) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta} \end{pmatrix} \] ### Step 2: Calculate the determinant of \( A(\alpha, \beta) \) The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \text{det}(A) = \cos \alpha \cdot (\cos \alpha \cdot e^{\beta} - 0) - \sin \alpha \cdot (-\sin \alpha \cdot e^{\beta} - 0) + 0 \] This simplifies to: \[ \text{det}(A) = \cos^2 \alpha \cdot e^{\beta} + \sin^2 \alpha \cdot e^{\beta} = e^{\beta} (\cos^2 \alpha + \sin^2 \alpha) = e^{\beta} \] ### Step 3: Find the adjoint of \( A(\alpha, \beta) \) The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactor matrix first. The cofactor matrix is calculated as follows: 1. For the element at (1,1): \( C_{11} = e^{\beta} \) 2. For the element at (1,2): \( C_{12} = -0 = 0 \) 3. For the element at (1,3): \( C_{13} = \sin \alpha \cdot e^{\beta} \) 4. For the element at (2,1): \( C_{21} = -\sin \alpha \cdot e^{\beta} \) 5. For the element at (2,2): \( C_{22} = e^{\beta} \) 6. For the element at (2,3): \( C_{23} = 0 \) 7. For the element at (3,1): \( C_{31} = 0 \) 8. For the element at (3,2): \( C_{32} = 0 \) 9. For the element at (3,3): \( C_{33} = \cos^2 \alpha + \sin^2 \alpha = 1 \) Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} e^{\beta} & 0 & \sin \alpha \cdot e^{\beta} \\ -\sin \alpha \cdot e^{\beta} & e^{\beta} & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Now, take the transpose to get the adjoint: \[ \text{adj}(A) = \begin{pmatrix} e^{\beta} & -\sin \alpha \cdot e^{\beta} & 0 \\ 0 & e^{\beta} & 0 \\ \sin \alpha \cdot e^{\beta} & 0 & 1 \end{pmatrix} \] ### Step 4: Calculate the inverse using the formula The formula for the inverse of a matrix is: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Substituting the values we found: \[ A^{-1} = \frac{1}{e^{\beta}} \begin{pmatrix} e^{\beta} & -\sin \alpha \cdot e^{\beta} & 0 \\ 0 & e^{\beta} & 0 \\ \sin \alpha \cdot e^{\beta} & 0 & 1 \end{pmatrix} \] This simplifies to: \[ A^{-1} = \begin{pmatrix} 1 & -\sin \alpha & 0 \\ 0 & 1 & 0 \\ \sin \alpha & 0 & e^{-\beta} \end{pmatrix} \] ### Step 5: Final Result Thus, the inverse of the matrix \( A(\alpha, \beta) \) is: \[ A^{-1}(\alpha, \beta) = \begin{pmatrix} \cos(-\alpha) & \sin(-\alpha) & 0 \\ -\sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & e^{-\beta} \end{pmatrix} \]

To find the inverse of the matrix \( A(\alpha, \beta) \), we will follow these steps: ### Step 1: Write down the matrix \( A(\alpha, \beta) \) The given matrix is: \[ A(\alpha, \beta) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If Delta = |(cos alpha,- sin alpha,1),(sin alpha,cos alpha,1),(cos (alpha + beta),- sin (alpha + beta),1)| , then

cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]|

cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]|

The value of the determinant ,cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]| is equal

A_((alpha))=[{:(cos alpha,-sin alpha),(sin alpha,cos alpha):}],A_((beta))=[{:(cos beta,-sin beta),(sin beta,cos beta):}] Which one of the following is correct ?

If sin alpha+sin beta=a and cos alpha+cos beta=b then tan((alpha-beta)/(2)) is equal to

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

Delta=det[[0,sin alpha,-cos alpha-sin alpha,0,sin betacos alpha,-sin beta,0]]

CENGAGE-MATRICES-Exercise (Single)
  1. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  2. If A=[(a,b,c),(x,y,x),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If...

    Text Solution

    |

  3. If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),...

    Text Solution

    |

  4. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  5. Id [1//25 0x1//25]=[5 0-a5]^(-2) , then the value of x is a//125 b. 2a...

    Text Solution

    |

  6. If A=[(1,2),(2,1)] and f(x)=(1+x)/(1-x), then f(A) is

    Text Solution

    |

  7. There are two possible values of A in the solution of the matrix equat...

    Text Solution

    |

  8. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  9. If A=[1tanx-tanx1], show that A^T A^(-1)=[cos2x-sin2xsin2xcos2x]

    Text Solution

    |

  10. If A is order 3 square matrix such that |A|=2, then |"adj (adj (adj A)...

    Text Solution

    |

  11. If A=[(0,1,2),(1,2,3),(3,a,1)] and A^(-1)=[(1//2,-1//2,1//2),(-4,3,c),...

    Text Solution

    |

  12. If nth-order square matrix A is a orthogonal, then |"adj (adj A)"| is

    Text Solution

    |

  13. Let aa n db be two real numbers such that a >1,b > 1. If A=(a0 0b) , t...

    Text Solution

    |

  14. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  15. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  16. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  17. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  18. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  19. If adjB=A ,|P|=|Q|=1,then adj(Q^(-1)B P^(-1)) is

    Text Solution

    |

  20. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |