Home
Class 12
MATHS
If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2...

If `A=[(a+ib,c+id),(-c+id,a-ib)]` and `a^(2)+b^(2)+c^(2)+d^(2)=1`, then `A^(-1)` is equal to

A

`[(a-ib,-c-id),(c-id,a+ib)]`

B

`[(a+ib,-c+id),(-c+id,a-ib)]`

C

`[(a-ib,-c-id),(-c-id,a+ib)]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} a + ib & c + id \\ -c + id & a - ib \end{pmatrix} \) given that \( a^2 + b^2 + c^2 + d^2 = 1 \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( \begin{pmatrix} p & q \\ r & s \end{pmatrix} \) is calculated as \( ps - qr \). For our matrix \( A \): \[ \text{det}(A) = (a + ib)(a - ib) - (c + id)(-c + id) \] Calculating each part: 1. \( (a + ib)(a - ib) = a^2 + b^2 \) 2. \( (c + id)(-c + id) = -c^2 - d^2 \) Thus, the determinant becomes: \[ \text{det}(A) = (a^2 + b^2) - (-c^2 - d^2) = a^2 + b^2 + c^2 + d^2 \] Given \( a^2 + b^2 + c^2 + d^2 = 1 \), we have: \[ \text{det}(A) = 1 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a 2x2 matrix \( \begin{pmatrix} p & q \\ r & s \end{pmatrix} \) is given by \( \begin{pmatrix} s & -q \\ -r & p \end{pmatrix} \). For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} a - ib & -(c + id) \\ -(-c + id) & a + ib \end{pmatrix} \] This simplifies to: \[ \text{adj}(A) = \begin{pmatrix} a - ib & -c - id \\ c - id & a + ib \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of a matrix is given by: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Since we found that \( \text{det}(A) = 1 \), we have: \[ A^{-1} = \text{adj}(A) \] Thus: \[ A^{-1} = \begin{pmatrix} a - ib & -c - id \\ c - id & a + ib \end{pmatrix} \] ### Final Result The inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} a - ib & -c - id \\ c - id & a + ib \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} a + ib & c + id \\ -c + id & a - ib \end{pmatrix} \) given that \( a^2 + b^2 + c^2 + d^2 = 1 \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( \begin{pmatrix} p & q \\ r & s \end{pmatrix} \) is calculated as \( ps - qr \). For our matrix \( A \): \[ \text{det}(A) = (a + ib)(a - ib) - (c + id)(-c + id) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Suppose, a, b, c ge 0, c ne 1, a^(2) + b^(2) + c^(2) = c . If |(a+ib)/(2-c)| = (1)/(2) , then c is equal to ____________.

Evaluate det[[a+ib,c+id-c+id,a-ib]]

If (4+2i)(1+2i)=A+iB, then

If a+(1)/(b)=1 and b+(1)/(c)=1, then c+(1)/(a) is equal to (a)0(b)(1)/(2)(c)1(d)2

If a+ib+ci^(2)+di^(3)=(x+iy)^(2) then sqrt(a-ib+ci^(2)-di^(3)) is equal to

If (a+ib)/(c+id)=x+iy, prove that (a-ib)/(c-id)=x-iy and (a^(2)+b^(2))/(c^(2)+d^(2))=x^(2)+y^(2)

If a + ib = c + id , then

If (x+iy)^(2)(c+id)^(2)=a+ib then (x^(2)+y^(2))^(k)(c^(2)+d^(2))=a^(2)+b^(2) where k is equal to

If a+b+c=2,a^(2)+b^(2)+c^(2)=1 and abc=3 then (1)/(a)+(1)/(b)+(1)/(c) is equal to a.1/2 b.2 c.1 d.0

CENGAGE-MATRICES-Exercise (Single)
  1. If A=[(a,b,c),(x,y,x),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If...

    Text Solution

    |

  2. If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),...

    Text Solution

    |

  3. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  4. Id [1//25 0x1//25]=[5 0-a5]^(-2) , then the value of x is a//125 b. 2a...

    Text Solution

    |

  5. If A=[(1,2),(2,1)] and f(x)=(1+x)/(1-x), then f(A) is

    Text Solution

    |

  6. There are two possible values of A in the solution of the matrix equat...

    Text Solution

    |

  7. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  8. If A=[1tanx-tanx1], show that A^T A^(-1)=[cos2x-sin2xsin2xcos2x]

    Text Solution

    |

  9. If A is order 3 square matrix such that |A|=2, then |"adj (adj (adj A)...

    Text Solution

    |

  10. If A=[(0,1,2),(1,2,3),(3,a,1)] and A^(-1)=[(1//2,-1//2,1//2),(-4,3,c),...

    Text Solution

    |

  11. If nth-order square matrix A is a orthogonal, then |"adj (adj A)"| is

    Text Solution

    |

  12. Let aa n db be two real numbers such that a >1,b > 1. If A=(a0 0b) , t...

    Text Solution

    |

  13. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  14. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  15. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  16. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  17. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  18. If adjB=A ,|P|=|Q|=1,then adj(Q^(-1)B P^(-1)) is

    Text Solution

    |

  19. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  20. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=O ,t h e nf(A) is ...

    Text Solution

    |