Home
Class 12
MATHS
If A=[(0,1,2),(1,2,3),(3,a,1)] and A^(-1...

If `A=[(0,1,2),(1,2,3),(3,a,1)]` and `A^(-1)=[(1//2,-1//2,1//2),(-4,3,c),(5//2,-3//2,1//2)]`, then the values of a and c are equal to

A

1, 1

B

1, -1

C

1, 2

D

`-1, 1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( a \) and \( c \) in the given matrices \( A \) and \( A^{-1} \), we will use the property that the product of a matrix and its inverse is the identity matrix \( I \). Given: \[ A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{pmatrix} \] \[ A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & c \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \] ### Step 1: Multiply \( A \) and \( A^{-1} \) We need to compute the product \( A \cdot A^{-1} \) and set it equal to the identity matrix \( I \). \[ A \cdot A^{-1} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & c \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \] ### Step 2: Calculate the first row of the product The first row of the product is calculated as follows: - First element: \[ 0 \cdot \frac{1}{2} + 1 \cdot (-4) + 2 \cdot \frac{5}{2} = -4 + 5 = 1 \] - Second element: \[ 0 \cdot (-\frac{1}{2}) + 1 \cdot 3 + 2 \cdot (-\frac{3}{2}) = 3 - 3 = 0 \] - Third element: \[ 0 \cdot \frac{1}{2} + 1 \cdot c + 2 \cdot \frac{1}{2} = c + 1 \] Thus, the first row of the product is: \[ \begin{pmatrix} 1 & 0 & c + 1 \end{pmatrix} \] ### Step 3: Calculate the second row of the product The second row of the product is calculated as follows: - First element: \[ 1 \cdot \frac{1}{2} + 2 \cdot (-4) + 3 \cdot \frac{5}{2} = \frac{1}{2} - 8 + \frac{15}{2} = \frac{1 + 15 - 16}{2} = 0 \] - Second element: \[ 1 \cdot (-\frac{1}{2}) + 2 \cdot 3 + 3 \cdot (-\frac{3}{2}) = -\frac{1}{2} + 6 - \frac{9}{2} = 6 - 5 = 1 \] - Third element: \[ 1 \cdot \frac{1}{2} + 2 \cdot c + 3 \cdot \frac{1}{2} = \frac{1}{2} + 2c + \frac{3}{2} = 2c + 2 \] Thus, the second row of the product is: \[ \begin{pmatrix} 0 & 1 & 2c + 2 \end{pmatrix} \] ### Step 4: Calculate the third row of the product The third row of the product is calculated as follows: - First element: \[ 3 \cdot \frac{1}{2} + a \cdot (-4) + 1 \cdot \frac{5}{2} = \frac{3}{2} - 4a + \frac{5}{2} = 4 - 4a \] - Second element: \[ 3 \cdot (-\frac{1}{2}) + a \cdot 3 + 1 \cdot (-\frac{3}{2}) = -\frac{3}{2} + 3a - \frac{3}{2} = 3a - 3 \] - Third element: \[ 3 \cdot \frac{1}{2} + a \cdot c + 1 \cdot \frac{1}{2} = \frac{3}{2} + ac + \frac{1}{2} = ac + 2 \] Thus, the third row of the product is: \[ \begin{pmatrix} 4 - 4a & 3a - 3 & ac + 2 \end{pmatrix} \] ### Step 5: Set the product equal to the identity matrix Now we set the product equal to the identity matrix \( I \): \[ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] From the first row: 1. \( c + 1 = 0 \) → \( c = -1 \) From the second row: 2. \( 2c + 2 = 0 \) → \( 2(-1) + 2 = 0 \) (This is satisfied) From the third row: 3. \( 4 - 4a = 0 \) → \( 4 = 4a \) → \( a = 1 \) 4. \( 3a - 3 = 0 \) → \( 3(1) - 3 = 0 \) (This is satisfied) 5. \( ac + 2 = 1 \) → \( 1(-1) + 2 = 1 \) (This is satisfied) ### Final Values Thus, the values of \( a \) and \( c \) are: \[ a = 1, \quad c = -1 \]

To find the values of \( a \) and \( c \) in the given matrices \( A \) and \( A^{-1} \), we will use the property that the product of a matrix and its inverse is the identity matrix \( I \). Given: \[ A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{pmatrix} \] \[ A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & c \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

[{:(,0,1,2),(,1,2,3),(,3,a,1):}],=A^(-1)=[{:(,1//2,-1//2,1//2),(,-4,3,c),(,5//2,-3//2,1//2):}] then find vales of a&c.

If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[5//2,-3//2,1//2]] then

If A=[[0,1,21,2,33,a,1]]A^(-1)=[[(1)/(2),(-1)/(2),(1)/(2)-4,3,c(5)/(2),(-3)/(2),(1)/(2)]]

If A=[0 1 2 1 2 3 3a1]a n d A_1=[1//2 12//12//-4 3c5//2-3//2 1//2] , then the values of a anti c are equal to 1,1 b. 1,-1 c. 1,2 d. -1,1

If A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)] and C=[(-1,-2,-2),(2,1,2),(2,2,3)] then find the value of tr. (A+B^(T)+3C) .

Given A=[(1,2,-3),(5,0,2),(1,-1,1)] and b=[(3,-1,2),(4,2,5),(2,0,3)] , find the matrix C such that A+C=B .

If A=[[0,1,3],[1,2,x],[2,3,1]] and A^(-1)=[[(1)/(2),-4,(5)/(2)],[-(1)/(2),3,-(3)/(2)],[(1)/(2),y,(1)/(2)]] . Find x,y

CENGAGE-MATRICES-Exercise (Single)
  1. If A=[1tanx-tanx1], show that A^T A^(-1)=[cos2x-sin2xsin2xcos2x]

    Text Solution

    |

  2. If A is order 3 square matrix such that |A|=2, then |"adj (adj (adj A)...

    Text Solution

    |

  3. If A=[(0,1,2),(1,2,3),(3,a,1)] and A^(-1)=[(1//2,-1//2,1//2),(-4,3,c),...

    Text Solution

    |

  4. If nth-order square matrix A is a orthogonal, then |"adj (adj A)"| is

    Text Solution

    |

  5. Let aa n db be two real numbers such that a >1,b > 1. If A=(a0 0b) , t...

    Text Solution

    |

  6. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  7. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  8. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  9. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  10. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  11. If adjB=A ,|P|=|Q|=1,then adj(Q^(-1)B P^(-1)) is

    Text Solution

    |

  12. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  13. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=O ,t h e nf(A) is ...

    Text Solution

    |

  14. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  15. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  16. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  17. If Aa n dB are square matrices of the same order and A is non-singular...

    Text Solution

    |

  18. If k in Rot h e ndet{a d j(k In)} is equal to K^(n-1) b. K^(n(n-1)) c...

    Text Solution

    |

  19. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |

  20. Let A=[(1,2,3),(2,0,5),(0,2,1)] and B=[(0),(-3),(1)]. Which of the fol...

    Text Solution

    |