Home
Class 12
MATHS
If F(x)=[("cos"x,-sin x,0),(sin x,cos x,...

If `F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)]` and `G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)]`, then `[F(x) G(y)]^(-1)` is equal to

A

`F(-x) G(-y)`

B

`G(-y) F(-x)`

C

`F(x^(-1))G(y^(-1))`

D

`G(y^(-1)) F(x^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the inverse of the product of the matrices \( F(x) \) and \( G(y) \). The matrices are defined as follows: \[ F(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] \[ G(y) = \begin{pmatrix} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{pmatrix} \] We need to find \( [F(x) G(y)]^{-1} \). ### Step 1: Calculate \( G(y)^{-1} \) To find the inverse of \( G(y) \), we first calculate its determinant. \[ \text{det}(G(y)) = \cos y \cdot (1) \cdot \cos y + 0 + \sin y \cdot 0 \cdot (-\sin y) = \cos^2 y + \sin^2 y = 1 \] Since the determinant is 1, we can find the adjoint of \( G(y) \) to get the inverse. The adjoint of \( G(y) \) is obtained by taking the cofactor matrix and then transposing it. Calculating the cofactor matrix: - For \( G(y) \): \[ \text{Cofactor}(G(y)) = \begin{pmatrix} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{pmatrix} \] The adjoint is: \[ \text{adj}(G(y)) = \begin{pmatrix} \cos y & 0 & -\sin y \\ 0 & 1 & 0 \\ \sin y & 0 & \cos y \end{pmatrix} \] Thus, the inverse of \( G(y) \) is: \[ G(y)^{-1} = \text{adj}(G(y)) = \begin{pmatrix} \cos y & 0 & -\sin y \\ 0 & 1 & 0 \\ \sin y & 0 & \cos y \end{pmatrix} \] ### Step 2: Calculate \( F(x)^{-1} \) Now, we will find the inverse of \( F(x) \). The determinant of \( F(x) \) is: \[ \text{det}(F(x)) = \cos^2 x + \sin^2 x = 1 \] The adjoint of \( F(x) \) is: \[ \text{Cofactor}(F(x)) = \begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, the inverse of \( F(x) \) is: \[ F(x)^{-1} = \text{adj}(F(x)) = \begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Calculate \( [F(x) G(y)]^{-1} \) Using the property of inverses, we have: \[ [F(x) G(y)]^{-1} = G(y)^{-1} F(x)^{-1} \] Substituting the inverses we calculated: \[ [F(x) G(y)]^{-1} = \begin{pmatrix} \cos y & 0 & -\sin y \\ 0 & 1 & 0 \\ \sin y & 0 & \cos y \end{pmatrix} \begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Perform the Matrix Multiplication Calculating the product: \[ [F(x) G(y)]^{-1} = \begin{pmatrix} \cos y \cos x + 0 + (-\sin y)(0) & \cos y \sin x + 0 + (-\sin y)(0) & 0 \\ 0 + 1 \cdot (-\sin x) + 0 & 0 + 1 \cdot \cos x + 0 & 0 \\ \sin y \cos x + 0 + \cos y(0) & \sin y \sin x + 0 + \cos y(0) & 0 \end{pmatrix} \] This simplifies to: \[ [F(x) G(y)]^{-1} = \begin{pmatrix} \cos y \cos x & \cos y \sin x & -\sin y \\ -\sin x & \cos x & 0 \\ \sin y \cos x & \sin y \sin x & \cos y \end{pmatrix} \] ### Final Result Thus, we have: \[ [F(x) G(y)]^{-1} = G(-y) F(-x) \]

To solve the problem, we need to find the inverse of the product of the matrices \( F(x) \) and \( G(y) \). The matrices are defined as follows: \[ F(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If F(x)=[[cos x,-sin x,0sin x,cos x,00,0,1]], then which of

F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] and G(x)=[[cosx,0,sinx],[0,1,0],[-sinx,0,cosx]], then [F(x)G(y)]^(-1) is equal to (A) F(-x)G(-y) (B) F(x-1)G(y-1) (C) G(-y)F(-x) (D) G(y^(-1))F(x^(-1))

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)

if A=[[cos,sin x,0-sin x,cos x,00,0,1]]=f(x) then

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

Let F (x) = [{:(cos x , -sin x , 0),(sin x , cos x , 0),(0 , 0, 1):}] , then

Let F(x)=[cos x-sin x0sin x cos x0001] Show that F(x)F(y)=F(x+y)

If f (x)={:((cos x,-sin x,0),(sin x,cos x,0),(0,0,1)):},"show that "(f(x))^(-1) = f(-x) .

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to

CENGAGE-MATRICES-Exercise (Single)
  1. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  2. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  3. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  4. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  5. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  6. If adjB=A ,|P|=|Q|=1,then adj(Q^(-1)B P^(-1)) is

    Text Solution

    |

  7. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  8. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=O ,t h e nf(A) is ...

    Text Solution

    |

  9. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  10. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  11. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  12. If Aa n dB are square matrices of the same order and A is non-singular...

    Text Solution

    |

  13. If k in Rot h e ndet{a d j(k In)} is equal to K^(n-1) b. K^(n(n-1)) c...

    Text Solution

    |

  14. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |

  15. Let A=[(1,2,3),(2,0,5),(0,2,1)] and B=[(0),(-3),(1)]. Which of the fol...

    Text Solution

    |

  16. If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 ...

    Text Solution

    |

  17. Let A be a square matrix of order 3 such that det. (A)=1/3, then the v...

    Text Solution

    |

  18. If A and B are two non-singular matrices of order 3 such that A A^(T)=...

    Text Solution

    |

  19. If A is a square matric of order 5 and 2A^(-1)=A^(T), then the remaind...

    Text Solution

    |

  20. Let P=[(1,2,1),(0,1,-1),(3,1,1)]. If the product PQ has inverse R=[(-1...

    Text Solution

    |