Home
Class 12
MATHS
If alpha, beta, gamma are three real num...

If `alpha, beta, gamma` are three real numbers and `A=[(1,cos (alpha-beta),cos(alpha-gamma)),(cos (beta-alpha),1,cos (beta-gamma)),(cos (gamma-alpha),cos (gamma-beta),1)]`
then which of following is/are true ?

A

A is singular

B

A is symmetric

C

A is orthogonal

D

A is not invertible

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and determine its properties. The matrix is defined as: \[ A = \begin{pmatrix} 1 & \cos(\alpha - \beta) & \cos(\alpha - \gamma) \\ \cos(\beta - \alpha) & 1 & \cos(\beta - \gamma) \\ \cos(\gamma - \alpha) & \cos(\gamma - \beta) & 1 \end{pmatrix} \] ### Step 1: Check if the matrix is symmetric A matrix is symmetric if \( A = A^T \). This means that the element at position \( (i, j) \) should be equal to the element at position \( (j, i) \). - For \( A \): - The element at \( (1, 2) \) is \( \cos(\alpha - \beta) \) and the element at \( (2, 1) \) is \( \cos(\beta - \alpha) \). - Since \( \cos(\beta - \alpha) = \cos(\alpha - \beta) \), the first condition holds. - Similarly, we check the other elements: - \( (1, 3) \) and \( (3, 1) \): \( \cos(\alpha - \gamma) = \cos(\gamma - \alpha) \) - \( (2, 3) \) and \( (3, 2) \): \( \cos(\beta - \gamma) = \cos(\gamma - \beta) \) Since all corresponding elements are equal, we conclude that \( A \) is symmetric. ### Step 2: Determine the determinant of the matrix To find the determinant of the matrix \( A \), we can use the property of determinants for symmetric matrices or calculate directly. Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). Substituting the values from matrix \( A \): \[ \text{det}(A) = 1 \cdot (1 \cdot 1 - \cos(\beta - \gamma) \cdot \cos(\gamma - \beta)) - \cos(\alpha - \beta) \cdot (\cos(\beta - \alpha) \cdot \cos(\gamma - \beta) - \cos(\alpha - \gamma) \cdot 1) + \cos(\alpha - \gamma) \cdot (\cos(\beta - \alpha) \cdot \cos(\gamma - \alpha) - 1 \cdot \cos(\beta - \gamma)) \] However, we can also note that the determinant of a symmetric matrix can be zero if the rows (or columns) are linearly dependent. ### Conclusion 1. **The matrix \( A \) is symmetric.** 2. **The determinant of \( A \) is zero, indicating that the rows are linearly dependent.**

To solve the problem, we need to analyze the given matrix \( A \) and determine its properties. The matrix is defined as: \[ A = \begin{pmatrix} 1 & \cos(\alpha - \beta) & \cos(\alpha - \gamma) \\ \cos(\beta - \alpha) & 1 & \cos(\beta - \gamma) \\ \cos(\gamma - \alpha) & \cos(\gamma - \beta) & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If cos (beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=-(3)/(2) then

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

det [[1, cos (beta-alpha), cos (gamma-alpha) cos (alpha-beta), 1, cos (gamma-beta) cos (beta-alpha), cos (beta-gamma), 1]] =

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

CENGAGE-MATRICES-Exercise (Multiple)
  1. If A1=[0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0],A2=[0 0 0i0 0-i0 0i0 0-i0 0 0]...

    Text Solution

    |

  2. Suppose a(1), a(2), .... Are real numbers, with a(1) ne 0. If a(1), a(...

    Text Solution

    |

  3. If alpha, beta, gamma are three real numbers and A=[(1,cos (alpha-beta...

    Text Solution

    |

  4. If D(1) and D(2) are two 3xx3 diagonal matrices, then which of the fol...

    Text Solution

    |

  5. Let A be the 2 xx 2 matrix given by A=[a("ij")] where a("ij") in {0, 1...

    Text Solution

    |

  6. If S=[(0,1,1),(1,0,1),(1,1,0)] and A=[(b+c,c-a,b-a),(c-b,c+b,a-b),(b-c...

    Text Solution

    |

  7. P is a non-singular matrix and A, B are two matrices such that B=P^(-1...

    Text Solution

    |

  8. Let A=[(1,2,2),(2,1,2),(2,2,1)]. Then

    Text Solution

    |

  9. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then

    Text Solution

    |

  10. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  11. If A=((a(i j)))(nxxn) and f is a function, we define f(A)=((f(a(i j)))...

    Text Solution

    |

  12. If a is matrix such that A^(2)+A+2I=O, then which of the following is/...

    Text Solution

    |

  13. If A =[{:(3,,-3,,4),(2,,-3,,4),(0,,-1,,1):}], then adj (adj A) is

    Text Solution

    |

  14. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  15. If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)], then

    Text Solution

    |

  16. If A is an invertible matrix, tehn (a d jdotA)^(-1) is equal to a d jd...

    Text Solution

    |

  17. If A and B are two invertible matrices of the same order, then adj (AB...

    Text Solution

    |

  18. If A, B, and C are three square matrices of the same order, then AB=AC...

    Text Solution

    |

  19. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  20. If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I a...

    Text Solution

    |