Home
Class 12
MATHS
If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then...

If `A=[{:(1,0,0),(1,0,1),(0,1,0):}]`, then

A

`A^(3)-A^(2)=A-I`

B

det. `(A^(100)-I)=0`

C

`A^(200)=[(1,0,0),(100,1,0),(100,0,1)]`

D

`A^(100)=[(1,1,0),(50,1,0),(50,0,1)]`

Text Solution

Verified by Experts

`A^(2)=[(1,0,0),(1,0,1),(0,1,0)][(1,0,0),(1,0,1),(0,1,0)]=[(1,0,0),(1,1,0),(1,0,1)]`
`A^(3)=[(1,0,0),(1,0,1),(0,1,1)][(1,0,0),(1,1,0),(1,0,1)]=[(1,0,0),(2,0,1),(1,1,0)]`
`A^(3)=A^(2)=[(0,0,0),(1,-1,1),(0,1,-1)]`
and `A-I = [(0,0,0),(1,-1,1),(0,1,-1)]` ltvbrgt `implies A^(3)-A^(2)=A-I` (1)
Now, det `(A^(n)-I)=` det. `((A-I)(I+A+A^(2)+...+A^(n-1)))`
`=" det."(A-1)xx"det. "(I+A+A^(2)+...+A^(n-1))`
`=0`
From (1), `A^(4)-A^(3)=A^(2)-A` (2)
Again from (1), `A^(5)-A^(4)=A^(3)-A^(2)=A-I`
Thus, if `n` is even, `A^(n)-A^(n-1)=A^(2)-A` (3)
If `n` is odd, `A^(n)-A^(n-1)=A-I` (4)
Consider the n is even.
`:. A^(n)-A^(n-1)=A^(2)-A` [from (3)]
and `A^(n-1)-A^(n-2)=A-I` [from (4)]
Adding these, we get
`A^(n)-A^(n-2)=A^(2)-I`
`implies A^(n)=A^(n-1)+A^(2)-I`
`=(A^(n-1)+A^(2)-I)+A^(2)-I`
`=(A^(n-6)+A^(2)-I)+2(A^(2)-I)`
`{:(...,...,...),(...,...,...):}`
`=(A^(2))+(n-2)/2 (A^(2)-I)`
`:. A^(n)=(n/2) A^(2)-((n-2)/2)I`
`:. A^(200)=100 A^(2)-991`
`=100 [(1,0,0),(1,1,0),(1,0,1)]-99 [(1,0,0),(0,1,0),(0,0,1)]=[(1,0,0),(100,1,0),(100,0,1)]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A = [{:( 0,0,0),( 1,0,0),(0,1,0):}] ,then

If A={:[(0,1,0),(1,0,0),(0,0,1)]:}," then "A^(-1)=

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

If A=[(1,0,1),(0,0,0),(1,0,1)] , then find |A^(2)| .

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The values of |A^(50| equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The value of |uu| equals

Let A = ({:(1,0,0),(0,1,1),(1,0,0):}) . Then A^(2025) - A^(2020) is equal to :

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

CENGAGE-MATRICES-Exercise (Multiple)
  1. P is a non-singular matrix and A, B are two matrices such that B=P^(-1...

    Text Solution

    |

  2. Let A=[(1,2,2),(2,1,2),(2,2,1)]. Then

    Text Solution

    |

  3. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then

    Text Solution

    |

  4. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  5. If A=((a(i j)))(nxxn) and f is a function, we define f(A)=((f(a(i j)))...

    Text Solution

    |

  6. If a is matrix such that A^(2)+A+2I=O, then which of the following is/...

    Text Solution

    |

  7. If A =[{:(3,,-3,,4),(2,,-3,,4),(0,,-1,,1):}], then adj (adj A) is

    Text Solution

    |

  8. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  9. If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)], then

    Text Solution

    |

  10. If A is an invertible matrix, tehn (a d jdotA)^(-1) is equal to a d jd...

    Text Solution

    |

  11. If A and B are two invertible matrices of the same order, then adj (AB...

    Text Solution

    |

  12. If A, B, and C are three square matrices of the same order, then AB=AC...

    Text Solution

    |

  13. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  14. If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I a...

    Text Solution

    |

  15. Let A, B be two matrices different from identify matrix such that AB=B...

    Text Solution

    |

  16. Let A and B be square matrices of the same order such that A^(2)=I and...

    Text Solution

    |

  17. Let B is an invertible square matrix and B is the adjoint of matrix A ...

    Text Solution

    |

  18. First row of a matrix A is [1,3,2]. If adj A=[(-2,4,alpha),(-1,2,1),...

    Text Solution

    |

  19. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |

  20. Which of the following matericeshave eigen values as 1 and -1 ?

    Text Solution

    |